ion Security
NET / MVC &
OWASP

What this talk Is aboUte

» This session is an introduction to web application security
threats using the OWASP Top 10 list of potential seCurity
flawsaFecusing on the Microsoft platform with examples in
ASP.NET and ASP.NET Model-View-Controller (MVC), we will
go over some of the common techniques for writing
secure code in the light of the OWASP Top 10 list. In this
talk, we will discuss the security features built into ASP.NET
and MVC (e.g., cross-site request forgery tokens, secure
cookies) and how to leverage them to write secure code.
The web application security risks that will be covered in
this presentation include injection flaws, cross-site scripting,
proken authentication and session management, insecure
direct object references, cross-site request forgery, security
misconfiguration, insecure cryptographic storage, failure to
restrict URL access, insufficient transport layer protection,
and unvalidated redirects and forwards.

about the spedker

Adnan Masood works as a Sr. system architect / technical leaeifenGrecn
dot Corporation where he develops SOA based middle-fi€r architectures)
distributed systems, and web-applications using Microsgft technologies.
He is a Microsoft Certified Trainer holding several techpaical certifications,
including MCSD2, M&PD (Enterprise Developer), and SCJP-Il. Adnan is
aftributed and publishedhin print media and on the Web; he also teaches
Windows Communication Foundation (WCF) courses ‘at the University

of California at San Diego and regularly presents at local code camps
and user groups. He is actively involved in the .NET community as
cofounder and president of the of Pasadena .NET Developers group.

Adnan holds a Master's degree in Computer Science; he is currently a
doctoral siudent working fowards PhD in Machine Learning; specifically
discovering interestingness measures in outliers using Bayesian Belief
Networks. He also holds systems architecture certification from MIT and
SOA Smaris ceriification from Carnegie Melon University.

OWASP / Top 10

What is OWASP¢

What are OWASP Top 10¢

Why should | care about OWASP top 10¢
What other lists are,out there?

When will | see the code?

Become a Member.
» Get a Cool Email address

()

» Gef the warm and cozy feeling
» Pretty Please ©

OWASP Top 10

OWASP Top 10 — 2010 (Previous) OWASP Top 10 - 2013 (New)

Al - Injection Al — Injection

A3 — Broken Authentication and Session Management A2 - Broken Authentication and Session Management

A2 - Cross-Site Scripting (XSS) A3 - Cross-Site Scripting (XSS)

A4 - Insecure Direct Object References A4 - Insecure Direct Object References

A6 — Security Misconfiguration A5 - Security Misconfiguration

A7 - Insecure Cryptographic Storage — Merged with A9 - Ab - Sensitive Data Exposure

A8 — Failure to Restrict URL Access — Broadened into = A7 — Missing Function Level Access Control

A5 - Cross-Site Request Forgery (CSRF) A8 - Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 - Using Known Vulnerable Components

A10 — Unvalidated Redirects and Forwards A10 — Unvalidated Redirects and Forwards

A9 - Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

OWASP Top 10 Risk R@lingG
Methodology

Attack Security Security Technical Business
Vectors Weaknesses Controls Impacts Impacts

Weakness Weakness
Prevalence Detectability

Technical Impact Business Impact

Average Common Average Moderate

Difficult Uncommon Difficult

Al-Injection

Hint: Congestion Zones=s
Central London

Exploits of a Mom

HI, THIS 15

YOUR SON'S SCHOOL.

WERE HAVING SOME
(OMPUTER TROUBLE.

\%W

OH, DEAR — DID HE
BREAK SOMETHING?

IN Pt WHY*

%

DID YOU REALLY
NAME YOLR SON
Robert'); DROP
TABLE Studerts;-~ 7

~OH, YES LITTLE
ROBBY TARLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEAR'S STUDENT RECORDS.

T HOPE YPURE HAPPY.
AND T HOPE

~~ YOUVE LEARNED
1 TOSANMIZE YOUR
DATARASE INPUTS,

Am | Vulnerable To
' ’ n j Tre @Ttiﬁfno'u?on application is vulnerable o injection isd®

verify that all use of interpreters clearly separates untrusted dataffrom
theseeommand or query. For SQL calls, this means using bind variables
in all prepared statements and stored procedures, and avoiding
dynamic queries.

Checking the code is a fast and accurate way to see if the application
uses interpreters safely. Code analysis tools can help a security analyst
find the use of interpreters and trace the data flow through the
application. Peneiration testers can validate these issues by crafting
exploits that confirm the vulnerability.

Automated dynamic scanning which exercises the application may
provide insight intfo whether some exploitable injection flaws exist.

Scanners cannot always reach interpreters and have difficulty

deteciing whether an aftack was successful. Poor error handling

makes injection flaws easier to discover.

How Do | Prevent 'Injeetion'?

Preventing injection requires keeping untrusted data separate from commanas,and
queries.

The preferred option is to use a safe APl which avoids the gse of the interpreter
entirely or provides,a parameterized interface. Be careful with APIs, such as
stored procedures, that are parameterized, but can still infroduce injection under
the hood.

If a parameterized APl is not available, you should carefully escape special
characters using the specific escape syntax for that interpreter.
provides many of these

Positive or “white list" input validation is also recommended, but is not @
complete defense as many applications require special characters in their input.
If special characters are required, only approaches 1. and 2. above will make
their use safe. has an extensible library of

Example Attack Scenarios

Scenario #1: The application uses untrusted data in the

construction of the following vulnerable SQL call;

Scenario #2: Similarly, an application’s blind trust in frameworks
may result In queries that are still vulnerable, (e.g., Hibernate
Query Language (HQL)):

In both cases, the attacker modifies the ‘id’ par,
her browser to send: "or '1'="l. For example:

g of both queries tor
ts table. More dangero
en invoke stored procedures.

References

OWASP

» OWASP SQL InjeclionRievERion Cheat Sheet
» OWASP Query ParameiSisaionC hedt Sheet
» OWASP Command Injection Article

(g crnal ERSEEEeRE) Reference

iNg/Escaping Requiremd

hapter on SQL Inject

d Injection
ction

nate Injection

A2-BrokemyAuthentication and

Session Management

Am | Vulnerable To '‘Broken Authentication and
Session Management'?

Are session management assets like user credentials and session IDs
properly protected? You may be vulnerable if:

User authentication credentials aren’t protected when siored
using hashing or encryption. See Aé.

Credentials canikbe guessed or overwritten through weak
account management functions (e.g., account creation,
change password, recover password, weak session 1Ds).

Session IDs are exposed.in the URL (e.g., URL rewriting).
Session IDs are vulnerable to attacks:

Session IDs don't fimeout, or user sessions or authentication
tokens, pariicularly single sign-on (SSO) tokens, aren’t properly
invalidated during logout.

Session IDs aren't rotated after successful login.

Passwords, session IDs, and other credentials are sent over
unencrypted connections. See Aé.

The primary recommendation for an organization
Is to make available to developers:

1. A single set of strong authenticationfand
session management controls. Such conirols
shiould strive to:

I, meet all the authentication and session management requirements
defined in OWASP's

(ASVS) areas V2 (Authentication) and V3 (Session
Management).

have a simple interface for developers. Consider the
as good examples to emulate, use, or
build upon.

2 Strong efforts should also be made to avoid
XSS flaws which can be used to steal session
IDs. See A3.

Example Attack Scenarios

Scenario #1: Airline reservations application supports URL rewriting, Pufing
session IDs in the URL:

An awthenticated user ofythe site wants to let his friends know qbbout the sale.
He e-mails the above link without knowing he is also giving awa@y his session
ID. When his friends use the link they will use his session and credit card.

Scenario #2: Application’s timeouts aren’t set properly. User uses a public
computer fo access site. Instead of selecting “logout” the user simply closes
the browser tab and walks away. Attacker uses the same browser an hour
later, and that browser is still authenticated.

Scenario #3: Insider or exiernal atiacker gains access to the system’s
password database. User passwords are not properly hashed, exposing every
users’ password to the attacker.

References

OWASP
For a more complete set of requirements and problems

to avoid in this areq, see the ASVS requirements g
Authentication (V2) and Session Managemg

> Qi snfication Cheat Sheet
word Cheat Sheet
ggement Cheat She

Guide: Chapter on

hapter on Authentice

oper Authentication
sion Fixation

A3-Cross-Site Scripting/(XSS$)

Am | Vulnerable To 'Cross-Site Scripfing (XSS)'?

You are vulnerable if you do not ensure that all user supplied nput is
properly escaped, or you do not verify it to be safe via input validation,
before including that input in the output page. Without proper ouipuwi
escaping or validation, such input will be freated as active gontent in
the browser. If Ajax is being used to dynamically update the page, are
you uUsing ¢ For unsafe JavaScript APIS, encoding or
validation must also be used.

Automated tools can find some XSS problems automatically. However,
each application builds output pages differently and uses different
prowser side interpreters such as Javascript, ActiveX, Flash, and
Silverlight, making automated detection difficult. Therefore, complete
coverage requires a combination of manual code review and
penetration festing, in addifion to automated approaches.

Web 2.0 technologies, such @s Ajax, make XSS much more difficult to
detect via automated tools.

How Do | Prevent 'Cross-Site Scripting (XSS)'?

» Preventing XSS requires separation of unfrustedidera from active
browser content.

1. The preferred option is to properly escape all untrusted_datq
based on the HTIML context (body, attribute, JavaSeript, CSS, ok
URL) that the data will be placed into. See the

for details on the required data
escaping techniques.

Posifive or “whitelist” input validation is also recommended as it
helps protect against XSS, but is not a complete defense as
many applications require special characters in their Input. Such
validation should, as much as possible, validate the length,
characters, format, and business rules on that data before
accepting the input.

For rich conient, consider auto-sanitization libraries like
OWASP's or the

Consider to defend against XSS
ACross your entire site.

Example Attack Scenarios

The application uses untrusted data in the constructi@ ollowing
HTML snippet without validation or escaping:

C' parameter in their brow

to be sent to the attacker’'s website,
e user's current session.

se XSS to defeat any automated CSRF
might employ. See A8 forin RF.

Cross-Site Scripting lllustrated

‘ Aﬂacker sets the tfrap — update my profile

b= o Q@@
Application'with
stored XSS
Attacker enters a vulnerability
malicious script into a

web page that stores
the data on the server

Script runs inside
victim’s browser with
full access to the DOM
and cookies

‘ Script silently sends attacker Victim's session cookie

Safe Escaping Schemes in Various HEMEEXECU fion
Contexts

€ Blank Page - Windows Internet Explorer

~N
Uu | €| aboutblank

¢ 4 | @BlankPage R - @ - :)Page~ (OiTgols v

some text to display

person

defaultValue

some javascript

red; text-
decoration: underline

javascript:toggle('lesson’)

0 Intemnet | Protected Mode: On ®100% -~ ‘

ALL other contexts CANNOT include Untrusted Data

Recommendation: Only allow #1 and #2 and disallow all others
See:

more. defails

References

OWASP
» OWASP XSS Prevention Cheat Sheet
» OWASP DOM based XSS Prevention Cheat Sha

» OWASP Cross-Site Scripting Article
» ESAPLEaeoder AP

oding/Escaping Requi

D Nitization Librar
apters on Data Valis

vide: Chapter on XSS &
Nn Cheat Sheet

Pss-Site Scripting

Ad=Insecure Direct Object

References

Am | Vulnerable To 'Insecure Direct Object
References'?

The best way to find out if an application is vulnerable to insecure direct
object references is to verify that all object references have ap@ropriate
defenses. To achieve this, consider:

For direct references to restricted resources, does the application fail to
verify the user is authorized to access the exact resource they have
requested?

If the reference is an indirect reference, does the mapping to the direct
reference fail to limit the values to those authorized for the current usere

Code review of the application can quickly verify whether either approach
IS Implemented safely. Testing is also effective for identifying direct object

references and whether they are safe. Automated tools typically do not look
for such flaws Because they cannot recognize what requires protection or
what is safe or unsafe.

How Do | Prevent 'Insecure Direct Object
References'?

Preventing insecure direct object references requires selecting
an approach for protecting each user accessible object (e.g.,
object number, filename):

Use per user or session indirect object references.This
prevents attackers from directly tfargeting unauthorized
resources. Fomexample, instead of using the resource’s
database key, a drop down list of six resources authorized for

the current user could use the numbers 1 tolé to iIndicate
which value the user selected. The application has to map
the per-user indirect reference back to the actual database
key on the server. OWASP’s includes both sequentiol
and random access reference maps that developers can
use o eliminate direct object references.

Check access. Each use of a direct object reference from an
unirusted source must include an access control check to
ensure the user Is authorized for the requested object.

Insecure Direct Object References NESHEHES

| Online Banking | Account Summary | Checking - Microsoft Internet Explorer B@@

o o e ke g » Attacker nofices his acct
parameteLiss6065

— cacct=6065

What Income and Expenses from Sep 26, 2004 to Jan 16, 2005 Checking 6534

mizer Total tosts

account do Recurring Casts [
for you? Varisble Costs
Fined Costs:

' » He modifies It 1o a
] 52000 §4000 FO000 000 HA0000 $12.000 14000 FI6000 H12000 §2 rrdl] n e O rby n U m be r

Descrptian Cateqory Amasunt

A k& i ::t:;: - 8 O C C 1-= 60 6 6

Checking-6515 3 v al, } $100.00
Current Baluince ami Bill Paymient €30 Phane
Available Balan = - & o
Available Balince myBank Credit Sard Blll Payment Credit Card

Tranifar Fuands ¥ ¥ ATH Withdraval, myBank, San Rafiel, CA Cash

Lo vt el | » Atftacker views the

2004 it Card Bill Payenane Cradit Card $l0.00

soomspnnnns (1w o] B 004wy s s @ o victim's account

D Insurince $435.00

Ma E R Rt .)
Mav 1, 2004 Mankarrsn Martgage Corp Bill Paymant € Morgage $2,184.42 I n fo rI I ' O TI O n

Oer 29, 2004 AT Withdraval, myB n i Cash $100.00

Your Bills

Py ills »

cuen 28 annd_mngBank Basenll Fawmll 433894 :.I
Hek Cash Flow: 6435.20

‘@ O Internet

Example Attack Scenarios

The application uses unverified data in a SQ
accessing account information:

String query = "SELECT * FROM accts WHERE
account = 2"

PreparedStatement pstmt =
connection.prepareStatement(query , ...);

ResultSet results = pstmt.executeQuery();

the ‘acct’ parameter
account number they want. If not

ACCess any user’'s account, instead
omer’'s account.

http://example.com/app/accountinfo?
acct=

References
OWASP

(See isAuthorizedForDatal),
iISAuthorizedForFile(), isAuthorizedForFunciion())

For addifional access control requirements, see the

External
>

> (is an example of a Direct
Object Reference attack)

A5-Security Misconfiguration

Am | Vulnerable To 'Security Misconfiguration'?

Is your application missing the proper security R@rdlening across
any part of the application stack? Including:

Is any of your software out of date? This includes thelOS)
Web/App Server, DBMS, applications, and all code libraries
(see new A9).

Aresanmyaunnecessary features enabled or installed (e.g.,
POrts, services, pages, accounts, privileges)¢

Are default accounts and their passwords still enabled and
unchanged?

Does your error handling reveal stack traces or.other overly
iInformative error messages to userss

Are the security settings in your development frameworks
(e.g., Struts, Spring, ASP.NET) and libraries not set to secure
valuese

Without a concerted, repeatable application security
configuration pProcess, systems are at a higher risk

How Do | Prevent 'Security Misconfiguration'?

The primary recommendations are to establish all'ofthe

following:

A repeatable hardening process that makes it fast and easy to
deploy another environment that is properly locked down.
PevelopmentnQA, and production environments should all be
configured identically (with different passwords used in each
environment). This precess should be automated to minimize the
effort required o sefup, a new secure environment.

A process for keeping abreast of and deploying all new
software updaies and patches in a timely manner to'each
deployed environment. This needs to include all code libraries
as well (see new A9).

A strong application architecture that provides effective, secure
separation between components.

Consider running scans and doing audits periodieally to help
detect future misconfigurations or missing patches.

Example Attack Scenarios

Scenario #1: The app server admin console is automatiéaliyinstalled and not
removed. Default accounts aren’'t changed. Attacker discovers the standard
admin pages are on your server, logs in with default passwords, and takes
over.

Scenario #2: Directory listing is not disabled on your server. Attacker

discevers she can simply.list directories to find any file. Attacker finds and
downloads all your compiled .NET classes, which she decompiles and reverse
engineers to get all your custom code. She then finds a serious access conirol
flaw in your application.

Scenario #3: App server configuration allows stack traces to be returnedto
users, potentially exposing underlying flaws. Attackers love the extra
information error messages provide.

Scenario #4: App server comes wWith sample applications that are not removed
from your production server. Said sample applications have welbknown security
flaws affackers can use fo'compromise your server.

References

OWASP

» OWASP Development Guide: Chapter on Configuration
» OWASP Code Review Guide: Chapter on Error Hong

» OWASP Testing Guide: Configuration Managemy

> OWeoess e Guide: Testing for Error Codes

_ |nsecure Configuration

in this areq, see the AS
Configuration (V12).

eb Server Hardening
ental Security Flaws
Frion Guides/Benchmarks

Aé=Sensitive Data Exposure

Insecure Cryptograpnlc
Storgae lllustrated

Victim enters credit
‘ card number in form

-

f rt} Malicious insider Il.ugfiﬁ_ﬂ

sieal§ 4 million Error handler logs CC ‘
credit card details because
numbers merchant gateway is

uravailable
Logs are accessible to ‘
all members of IT staff

for debugging
purposes

i /“a.,‘z\%

Am | Vulnerable To 'Sensitive Data Exposure'?

The first thing you have to determine is which data is Sensitive
enough to require extra protection. For example, passwords,
credit card numbers, health records, and personal
information should be protected. For all such data:

Is apysefthissdata stored in clear text long term, ingluding backups of
this datae

Is any of this data fransmitted in clear text, internally or externallye
Internet traffic is especially dangerous.

Are any old / weak cryptographic algorithms used?

Are weak crypto keys generated, or is proper key management or
rotation missing<¢

Are any browser security directives or headers missing when sensitive
data is provided by / sent 1o the browsere

And more ... For a more complete set of problems to avoid, see

How Do | Prevent 'Sensitive Data Exposure'?

The full perils of unsafe cryptography, SSL usage, and*@data™protection are

well ?eyond the scope of the Top 10. That said, for all sensitive data, do all
o)

the following, at a minimum:

Considering the threats you plan to protect this data from (€.g., insider
aftack, external.user), make sure you encrypt all sensitive data art rest
and in fransit In a manner that defends against these threats.

Don't store sensifive data unnecessarily. Discard it as soon as possible.
Data you don't have can't be stolen.

Ensure strong standard algorithms and strong keys are used, and proper
key management is in place. Consider using

Ensure passwords are stored with an algorithm specifically designed for
password protection, such as ; , Or

Disable autocomplete on forms collecting sensitive data and disable
caching for pages that contain sensitive data.

Example Attack Scenarios

Scenario #1: An application encrypts credit Cardintmbers in a
database using automatic database encryption. However,
this means it also decrypts this data automatically when
retrieved, allowing an SQL injection flaw to retriey@ credit cara
numbers in clear text. The system should have gncrypted the
credit card numbers using a public key, and only allowed
back-end applications to decrypt them with the private key.

Scenario #2: A site simply doesn’t use SSL for alllauthenticated
pages. Attacker simply. monitors network traffic (like an open
wireless network), and steals the user’s session cookie. Aftacker
then replays this cookie and hijacks the user’s session,
accessing the user's private data.

Scenario #3: [he password database uses unsalted hashes to
sfore everyone's passwords. A file upload flaw allows an
atfacker fo retrieve the password file. All of the unsalted
hashes can be exposed with a rainbow table of
precalculated hashes.

References

OWASP

For a more complete set of requirements, see ASVS reg’ts on

Cryptography (V7), Data Protection (V?) and Communicati]

dc Storage Cheat Sheet
e Cheat Sheet
ection Cheat Sheet
er on SSL/TLS Testing

ic Issues
orage of Sensitive Information
ransmission of Sensitive Information

cryption

A Z-Missing,Function Level Access
Control

Am | Vulnerable To 'Missing Function Level
Access Conftrol'?

The best way to find out if an application has failed to properly restrict
function level access is to verify every application function:

Does the Ul show navigation to unauthorized functionse
Are server side authentication or authorization checks missinge

Aré server side checks done that solely rely on information provided by the
attacker?

Using a proxy, browse your application with a privileged role. Then revisit
restricted pages using a less privileged role. If the server responses are alike,
you're probably vulnerable. Some testing proxies directly support this type of
analysis.

You can also check the access control implementation in the code. Try
following a single privileged request through the code and verifying the
authorization pattern. Then search the codebase to find where that patternis
not being followed.

Automated fools are unlikely to find these problems.

How Do | Prevent 'Missing Function Level
Access Control'?

Your application should have a consistent and easy to analyze
authorization module that is invoked from all of your business
functions. Frequently, such protection is provided by one ogmore
components external to the application code.

Think about the process for managing entitlements and ensure you can
update and audit easily. Don’t hard code.

The enforcement mechanism(s) should deny all access by default,
requiring explicit grants to specific roles for access to every function.

If the function is involved in o workflow, check to make sure'the
conditions are in the proper state to allow access.

NOTE: Most web applications don't display links and buttons to
unauthorized functions, but this “ presentation layer access control”
doesn't actually provide profection. You must also implement checks in

the coniroller or businessogic.

Example Attack Scenarios

Scenario #1: The attacker simply force browses to targefldRLs. The following
URLs require authentication. Admin rights are also required for access to
the admin getapplnfo page.

http://example.com/app/getapplnfo
http://example.com/app/admin_getapplnfo

If an unauthenticated usencan access either page, that's a flaw. If an
authenticated, non-admin, user is allowed to access

The admin getapplnfo page, this is also a flaw, and may lead the attacker
to more improperly protected admin pages.

Scenario #2: A page provides an 'action’ parameter to specify the function
peing invoked, and different actions require different roles. If these roles
aren’t enforced, that's a flaw.

References

OWASP

» OWASP Top 10-2007 on Failure 1o Restrict URL Access
» ESAPI Access CORIEIN

» OWASP Development Guide: Chapter o

> QM o Guide: Testing for Path Tr,

orced Browsing

trol requirements, seé&
ess Conirol (V4).

poroper Access Conitrol

A8-Cross-Site Request Forgery (CSRF)

Am | Vulnerable To 'Cross-Site [Request Forgery
(CSRF)"?

To check whether an application is vulnerable, see if any links and forms lack
an unpredictable CSRF token. Without such a token, attackers can forge
malicious requests. An alternate defense is to require the user 1o prove
they intfended to submit the request, either through reauthentication, or
some other proof they are a real user (e.g., a CAPTCH A%

Focws on the links anchiorms that invoke state-changing functions, since those
are the most important CSRF targets.

You should check mulfistep fransactions, as they are not inherently immune.
Attackers can easily forge a series of requests by using multiple tags or
possibly JavaScript.

Note that session cookies, source |P addresses, and other information
automartically sent by the browser don't provide any defense against
CSRF since this information is also included in forged requests.

OWASP’s 100l €an help generate test cases to demonstrate the
dangers of CSRF flaws.

CSRF Vulnerabillity PC

>

> nage on another

All sites rel
credentials are

(almost all sites are

Automatically Pro
Session cookie
Basic authentication
IP address

Client side SSL certifi
Windows domain g

How Do | Prevent 'Cross-Site RequestForgery
(CSRF)'?
Preventing CSRF usually requires the inclusion of an unpredietable token in

each HTTP request. Such tokens should, at a minimum, be unique per user
session.

The preferred option is to include the unique token in a hidden field. This
causessthewvalue to be sent in the body of the HTTP/request, avoiding Its
inclusion in the URL;, which is more prone to exposure.

The unique token can alse be included in the URL itself, or a URL
parameter. However, such placement runs a greatertisk that the URL will
pe exposed 10 an attacker, thus compromising the secret token.
OWASP’s can automatically include such tokensin Java EE,
.NET, or PHP apps. OWASP’s iIncludes methods developers can use
to prevent CSRF vulnerabilities.

Requiring the user 10 reauthenticate, or prove they are a user (e.g., via a
CAPICHA) can also protect against CSRF.

Example Attack Scenarios

The application allows a user to submit a state changingreguestthat does
not include anything secret. For example:

hitp://example.com/app/transferFundsga
mount=1500&destinationAccount=4673243

243
So, the attacker constructs a request that will fransfer money from the
victim's account fo thexattacker's account, and then embeds this atfack in an

Image request or iframe stored on various sites under the attacker’s conirol:

<img
src

width="0" height="0" />

If the victim visits any of the atfacker’s sites while already authenticated to
example.com, these forged requests will automatically include the user’s
session info, authorizing the atfacker’'s request

CSRF lllustrated

Attacker sets the trap on some website on the internet

‘ (or simply via an e-mail)

View Your Accounts
1. Usemame: 2. Passwoed:

e T bl L e Application with CSRF
1 1 am
s - Hidden tag | vulnerability

of Learn Moje

Sarnte) i i
5 o e contains attack ;

' - against vulne

While logged into vulnerable site,
victim views attacker site

Vulnerable site sees
 tag loaded by legitimate request
browser - sends GET from victim and
request (including | performs the action
credentials) to P requested
vulnerable site

References

OWASP

» OWASP CSRF Article

» OWASP CSRF Preveniion Cheadi Sheet
» OWASP CSRFGuard = CSREF Defense T1g

ome Page
lass with AntiCSRF

e: Chapter on CSK

SRF Testing Tool

A9=Using Components with Known

Vulnerabilities

Am | Vulnerable To 'Using Componenis with
Known Vulnerabilities'?

In theory, it ought to be easy to figure out if you are currently using any
vulnerable components or libraries. Unfortunately, vulnerability reports for
commercial or open source software do not always specify exacilyywhich
versions of a component are vulnerable in a standard, searchable way.
Further, not all libraries use an understandable version numbering system.
Worstsof all, not all vulnerabilities are reported to a central clearinghouse

that is easy to search, although sites like elgle are becoming easier to
search.

Determining if you are vulnerable requires searching these databbases, as well
as keeping abreast of project mailing lists and announcements for anythtAg
that might be a vulnerability. If one of your components does have a
vulnerability, you should carefully evaluate whether you are actually
vulnerable by checking 1o see if your code uses the part of the component
with the vulnerability and whether the flaw could result in an impact you care
about.

How Do | Prevent 'Using Componenis with
Known Vulnerabilities'?

One option is not to use components that you didn't write. But that's
not very realistic.

Most component projects do not create vulnerability patches for old
versions. Instead, most simply fix the problem in the next version. So
upgradinggiesihese new versions is crifical. Software projects should
have a process in place to:

Identify all components and the versions you are using, including all
dependencies. (e.g., the plugin).

Monitor the security of these components in public datalbases, project
mailing lists, and security mailing lists, and keep them up to date.

Establish security policies governing component use, such as requiring
cerfain software development practices, passing security tests, and
acceptable licenses.

Where appropriate, consider adding security wrappers around
components to disable unused functionality and/ or secure weak or
vulnerable aspects of the component.

Example Attack Scenarios

Component vulnerabllities can cause almostanyeiyoe of risk
iImaginable, ranging from the trivial to sophisticated malware
designed to target a specific organization. Componenis
almost always run with the full privilege of the apglication, so
flaws in any component can be serious, The following two
vulnerable components were downloaded 22m times in 201 1.

— By failing 10 provide an
identity token, attackers could invoke any welb service with full
permission. Node.JS extension can be a potent al example of
third party extension forllS runtime.

— Abuse of the Expression LOnguage
implementation in Nhibernate/Spring allowed attackers to
execute arbitrary code, effectively taking over the server.

Every application using either of these vulnerable libraries is
vulneraple to artack as both of these components are directly
accessible by application users. Other vulnerable libraries,
used deeper In an application, may be harderto exploit.

References

OWASP

» OWASP Dependency Check (for Java libraries)
» OWASP SafeNuGet (for .NET libraries thru NuGet)
» OWASP Good Component Practices Project

of Insecure Libraries

ccurit
erns in Open Source CompP-
litles and Exposures

t Vulnerability that was fixed in
Rails GEM

A10-Unvalidated Redirects and Forwards

Am | Vulnerable To 'Unvalidated Redirects and
Forwards'?

The best way to find out if an application has any unvalidated
redirects or forwards is to:

1. Review the code for all uses of redirect or forward (called @
transfer in .NET). For each use, identify if the target URL is
inelwdedimany parameter values. If so, if the target URL isn't
validated against,a whitelist, you are vulnerable.

Also, spider the site to see if it generates any redirects (HTTP
response codes 300-30/, typically 302). Look @t the
parameters supplied prior to the redirect to seeiif they
appear to be a target URL or a piece of such a URLHFso;
change the URL rarget and observe whether the site redirects
to the new target.

If code IS unavailable, check all parameters to see if they
look like part of a redirect or forward URL destination and test
those that do.

How Do | Prevent 'Unvalidated Redirects and
Forwards'?

Safe use of redirects and forwards can be done in a number of ways:
Simply avoid using redirects and forwards.

If used, don’t involve user parameters in calculatingfthe destination.
This can usually be done.

lf.destinationtparameters can't be avoided, ensure that the
supplied value is valid, and authorized for the user.

It is recommended that any such destination parameters be a
mapping value, rather than the actual URL or portion of the URL,
and that server side code tfranslate this mapping ta the target URL.
Applications can use ESAPI to override the method
to make sure all redirect destinations are safe.

Avoiding such flaws Is exiremely important as they are a favorite
target of phishers frying 1o gain the user’s trust.

Example Attack Scenarios

Scenario #1: The application has a page called “redirect.jsp™which takes a
single parameter named “url”. The attacker crafts a malicious URL that
redirects users to a malicious site that performs phishing and installs
malware.

? vrl=evil.com

Scenario #2: The application.uses forwards to route requests between
different parts of the site. To facilitate this, some pages use a parameter o
indicate where the user should be sent if a transaction is suceessful. In this
case, the aftacker crafis a URL that will pass the application’s access control
check and then forwards the atfacker to administrative functionality for
which the attackerisn’'t authorized.

fwd=admin.jsp

Unvalidated Forward lllustraied

Attacker sends attack to vulnerable page they have
_accessto

E Request sent to

vulnerable page
which user does have

publig woid sensitiveMethod (

access to. Redirect HttpServletRequest request,
HttpServletResponse response) {

sends user directly to ey -
privaie pqge, = {{.Do sensitive stuff here.

bypas;ng access

- controk.
Application

authorizes request,
which continues to Forwarding page fails to validate
vulnerable page parameter, sending attacker to
unavuthorized page, bypassing
public void doPost(HttpServletRequest request,

HttpServletResponse response) { access CO“"O'

try f{
String

request .getRequestDispatcher (
) . forward (request, response);

}
catch (...

Summary: How do you
address these problemse

» Develop Secure Code
» Follow the best practices in OWASP's Guide to Building Secure Web Applications
>

» Use OWASP's Application Security Verification Standard as a/guide to what an
application needs to be secure

>

» Use standard security components that are a fit for your organization
» Use OWASP's ESAPI as a basis for your standard components
>

» Review Your Applications

» Have an expert team review your applications

» Review your applications yourselves following OWASP Guidelines
» OWASP Code Review Guide:

» OWASP Testing Guide:

References

OWASP
» OWASP Arficle on Open Redirects

» ESAPI SecurityWrapperResponse sendRedirecty)
method

External

» CWE Eniry 601 on Open Redirects
» WASC Ariicle on URL Redirector Abuse

» Google blog arificle on the dangers of open
redirects

» OWASP Top 10 for .NET arficle on Unvalidated
Redirecis and Forwards

Further Readings

HackinG
WEB Apps
Detecting and Preventing Web Application Security Problems

Thanks!

» adnanmasood@gmail.com

@adnanmasood

Masood.com

