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Abstract

The P versus NP problem use to be a major unsolved problem in computer science. However, as
of today, April 1st 2014, the researcher has proven sans rigor that P6=NP.The question of P = NP asks
whether every problem whose solution can be quickly verified by a computer can also be quickly solved by
a computer. This problem was introduced in 1971 by Stephen Cook in his seminal paper "The complexity
of theorem proving procedures" Beame et al. [1995], Cook [2000] and is considered by many to be the
most important open problem in the field. In this proof, we reduce this important concept to an algebraic
proof reductio ad absurdum. Algebrizing proofs has gotten a bad reputation since Baker-Gill-Solovay
result, however new non-relativizing proof techniques were successfully used to prove that IP = PSPACE.
Following the Erik Demaine’s non-proof of P = NP1, Scott Aaronson and Avi Wigderson also showed that
the main technical tool used in the IP = PSPACE proof, known as arithmetization, was also insufficient to
resolve P = NP.

Trivializing the solution to the P = NP question, this paper deterministically determines that P 6= NP
and that the NP problems can be verified in polynomial time; like the subset-sum problem, can also be
solved in polynomial time. As it proves P 6= NP, it means that there are problems in NP (such as NP-
complete problems) that are harder to compute than to verify: they could not be solved in polynomial time,
but the answer could be verified in polynomial time. This proof gives NSA much needed relief from bitcoin
mining as well as public-key cryptography and symmetric ciphers vulnerabilities using Qubit Miner ASIC
and further focus on digital eavesdropping.

1 Introduction

To start with a circular definition, P versus NP problem is the determination of whether all NP-problems are
actually P-problems. If P and NP are not equivalent, then the solution of NP-problems requires (in the worst
case) an exhaustive search, while if they are, then asymptotically faster algorithms may exist. A problem is
assigned to the NP (non-deterministic polynomial time) class if it is solvable in polynomial time by a non-
deterministic Turing machine. A P-problem (whose solution time is bounded by a polynomial) is always also
NP. If a problem is known to be NP, and a solution to the problem is somehow known, then demonstrating the
correctness of the solution can always be reduced to a single P (polynomial time) verification. If P and NP are
not equivalent, then the solution of NP-problems requires (in the worst case) an exhaustive search.Weisstein

Now that we have formalities out of the way, a prior Hubert Chen’s argument that "P-not-equal-to-NP":
" proof by contradiction is in order. It is assumed P = NP. Let y be a proof that P = NP. The proof y

can be verified in polynomial time by a competent computer scientist, the existence of which we assert.

However, since P=NP, the proof y can be generated in polynomial time by such computer scientists. Since

this generation has not yet occurred (despite attempts by such computer scientists to produce a proof), we

1https://www.youtube.com/watch?v=VqeF98GGiXQ
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have a contradiction. We however feel that mere onus proband is insufficient and without proper use of
argumentum ad ignorantiam, cum hoc ergo propter hoc and reductio ad absurdum, this proof won’t stand.

Following proof that showed that P 6= NP lacks the practical computational benefits of a proof that P =

NP, but nevertheless represents a very significant advance in computational complexity theory and provide
guidance for future research. It allows one to show in a formal way that many common problems cannot be
solved efficiently, so that the attention of researchers, bitcoin enthusiasts, and NSA can be focused on partial
solutions or solutions to other problems.

1.1 Advantages of the Proof P 6= NP

This proof of P 6= NP leaves open the average-case complexity of hard problems in NPJohnson [2012]. For
example, it is possible that SAT requires exponential time in the worst case, but that almost all randomly
selected instances of it are efficiently solvable. A proof that P = NP would have had stunning practical
consequences, and therefore is avoided. If the proof leads to efficient methods for solving some of the
important problems in NP, doctoral students are better served by avoiding it. It is also possible that a proof
may not lead directly to efficient methods, perhaps if the proof is non-constructive, or the size of the bounding
polynomial is too big to be efficient in practice.

Cryptography, for example, relies on certain problems being difficult. A constructive and efficient solution
to an NP-complete problem such as 3-SAT would break most existing cryptosystems including public-key
cryptography and symmetric ciphers such as AES or 3DES used for the encryption of communications data.
These would need to be modified or replaced by information-theoretically secure solutions which would
requite lots of work. Therefore, we strongly belief that P 6= NP serves graduate students (humanity) quite
well in general.

To a graduate student’s delight, this also helps to successfully avoid the wide range of satisfiability problems
(often referred to as SAT) 0-1 integer programming Clique, set packing Vertex cover Set covering, Feedback
arc set, Directed Hamilton circuit, Undirected Hamilton circuit, Satisfiability with at most 3 literals per clause,
Chromatic number (also called the Graph Coloring Problem), Clique cover, Exact cover, Knapsack, Job
sequencing Partition and Max cut to name a few (too many if you ask me). Godel, in his early thoughts on
computational complexity, noted that a mechanical method that could solve any problem would revolutionize
mathematics; but knowing Godel, he must have left it incomplete.

2 The Proof

Research mathematicians spend their careers trying to prove theorems, and some proofs have taken decades or
even centuries to find after problems have been stated—for instance, Fermat’s Last Theorem took over three
centuries to prove. A method that is guaranteed to find proofs to theorems, should one exist of a "reasonable"
size, would essentially end this struggle. Here is a simple, algebraic proof by contradiction.

In logic, proof by contradiction is a form of proof that establishes the truth or validity of a proposition by
showing that the proposition’s being false would imply a contradiction. Proof by contradiction is also known
as indirect proof, apagogical argument, proof by assuming the opposite, and reductio ad impossibilem. It is a
particular kind of the more general form of argument known as reductio ad absurdum.
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Let’s assume p = N P

p2 = pN P

p2 + p2 = pN P + p2

2p2 = pN P + p2

2p2−2pN P = pN P + p2−2pN P

2p2−2pN P = p2− pN P

2(p2− pN P) = 1(p2− pN P)

Canceling (p2− pN P) on both sides, we get the contradiction 2 = 1, which is incorrect, therefore

p6=N P

3 Conclusion

P=NP asks whether every problem whose solution can be quickly verified by a computer can also be quickly
solved by a computer. It was introduced in 1971 by Stephen Cook in his seminal paper "The complexity of
theorem proving procedures" and is considered by many to be the most important open problem in the field.
In this proof, we reduce this important concept to an algebraic proof reductio ad absurdum .

P=NP is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US$1,000,000 prize for the first correct solution. The millennium prize committee can reach the author at
adnan @ nova dot edu. Researcher does not accept bitcoins.
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