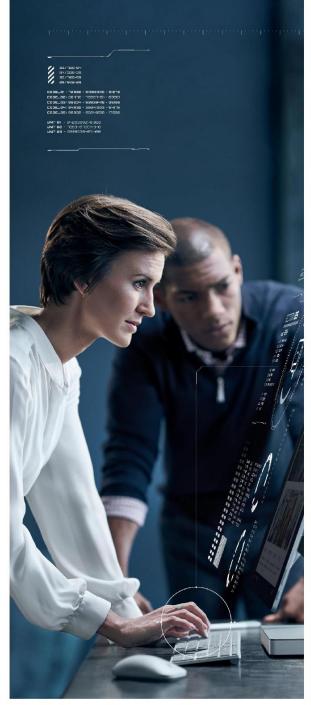


Operationalizing AI - Portable ML Model Sharing across Enterprise

Adnan Masood, PhD.

October 2018

Slides Courtesy of Microsoft Corp. All product names, logos, and brands are property of their respective owners.



Adnan Masood, PhD.

Dr. Adnan Masood is an Artificial Intelligence and Machine Learning researcher, visiting scholar at Stanford Al Lab, software architect, and Microsoft MVP (Most Valuable Professional) for Artificial Intelligence. As Chief Architect of Al and Machine Learning, at UST Global, he collaborates with Stanford Artificial Intelligence Lab, and MIT Al Lab for building enterprise solutions

Author of Amazon bestseller in programming languages, "Functional Programming with F#", Dr. Masood teaches Data Science at Park University, and has taught Windows Communication Foundation (WCF) courses at the University of California, San Diego. He is a regular speaker to various academic and technology conferences (WICT, DevIntersection, IEEE-HST, IASA, and DevConnections), local code camps, and user groups. He also volunteers as STEM (Science Technology, Engineering and Math) robotics coach for elementary and middle school students.

Development
Playbook

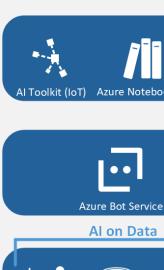


Table of Contents

^	About this Playbook	2			
	Partner Practice Development Framework	5			
	What is Artificial Intelligence?	6			
	Al Opportunity	8			
	Industry Opportunities	9			
Define Your Strategy					
	Executive Summary	18			
	Define Your Practice Focus	19			
	Understanding the AI Practice	.20			
	The Microsoft Approach to Al	.23			
	Pre-Built AI using Cognitive Services	.28			
	Building Custom AI	.35			
	Microsoft AI Platform Summary	.42			
	Define and Design the Solution Offer	.43			
	Understanding Project Based Services	.44			
	Understanding Managed Services	.54			
	Accelerate your Managed Service Model	.60			
	Understanding Intellectual Property	61			
	Define Industry Specific Offerings	.65			
	Define Your Pricing Strategy	.66			
	Calculate Your Azure Practice Costs	.69			
	Identify Partnership Opportunities	71			
	Define Engagement Process	.73			
	Identify Potential Customers	.74			
	Join the Microsoft Partner Network	.75			
	Stay Informed on AI Matters	.77			
	Identify Solution Marketplaces	.78			

Hire & Train 80					
Executive Summary81					
Hire, build, and train your team82					
Job Descriptions for your Technical Team 88					
Recruiting Resources98					
Training & Readiness					
Operationalize1					
Executive Summary114					
Implement a Process115					
Claim Your Internal Use Benefits119					
Define Customer Support Program and Process 124					
Manage and Support an Al solution in Azure128					
Support Ticket Setup and Tracking130					
Implement Intellectual Property Offerings131					
Setup Social Offerings					
Create Engagement Checklists & Templates133					
Go to Market & Close Deals134					
Executive Summary					
Marketing to the Al Buyer136					
Engage Technical Pre-Sales in Sales Conversations 138					
Architecture Design Session (ADS)140					
Go-to-Market and Close Deals Guide142					
Optimize & Grow143					
Executive Summary144					
Understanding Customer Lifetime Value145					
Guide: Optimize and Grow147					
AI Playbook Summary148					

Microsoft Al Platform

AI Tools

AI Toolkit (IoT) Azure Notebooks Azure ML Workbench VS Code Tools for AI ML Studio

Cognitive Services

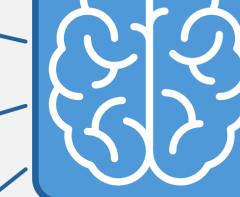
Machine Learning Services

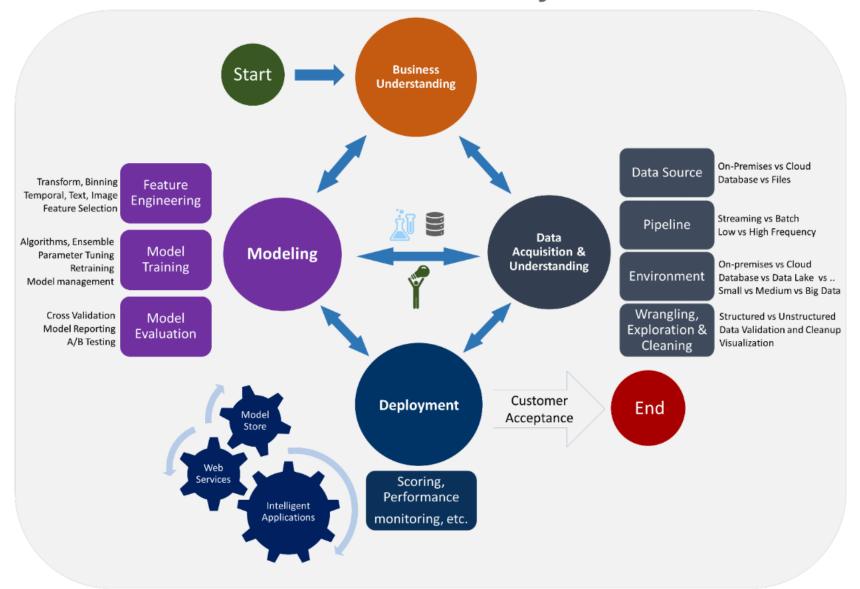
Al Services

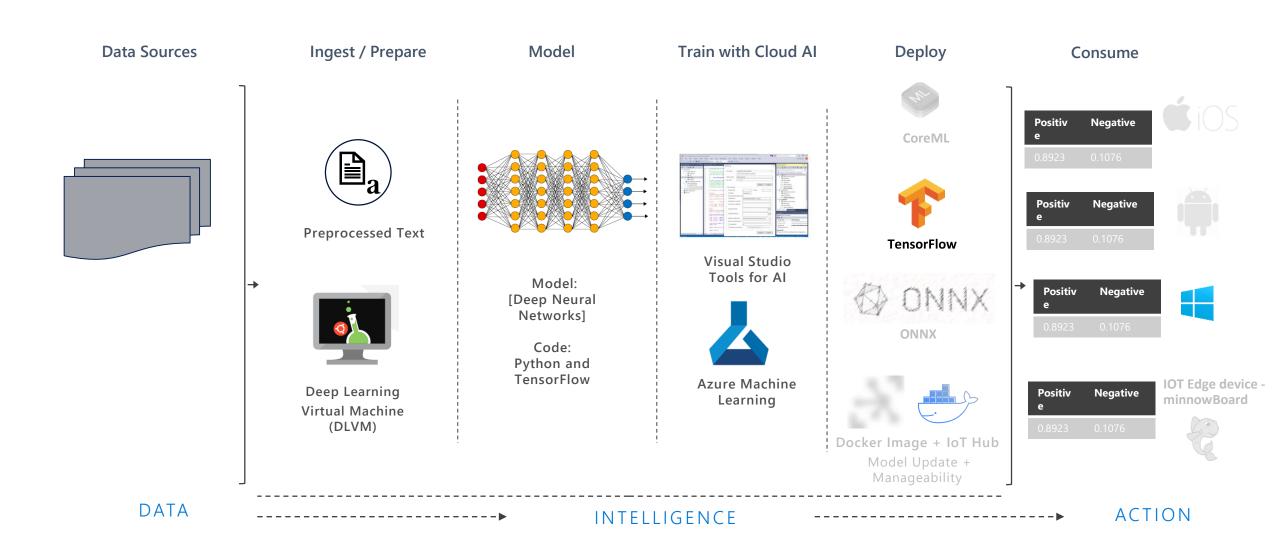
Al Compute

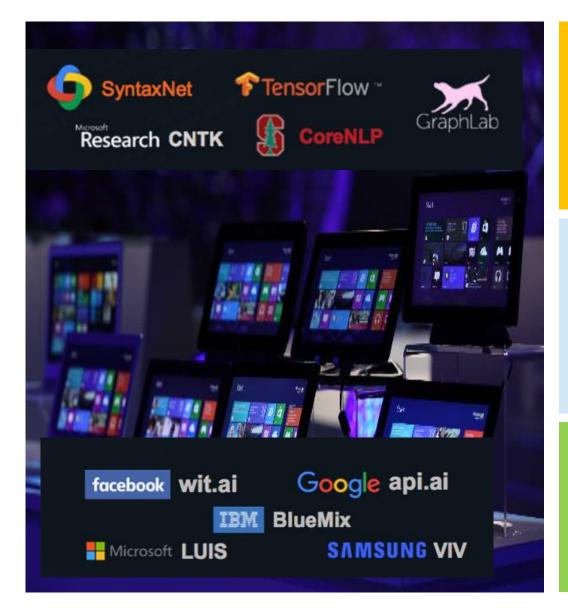
AKS

DSVM


Batch Al

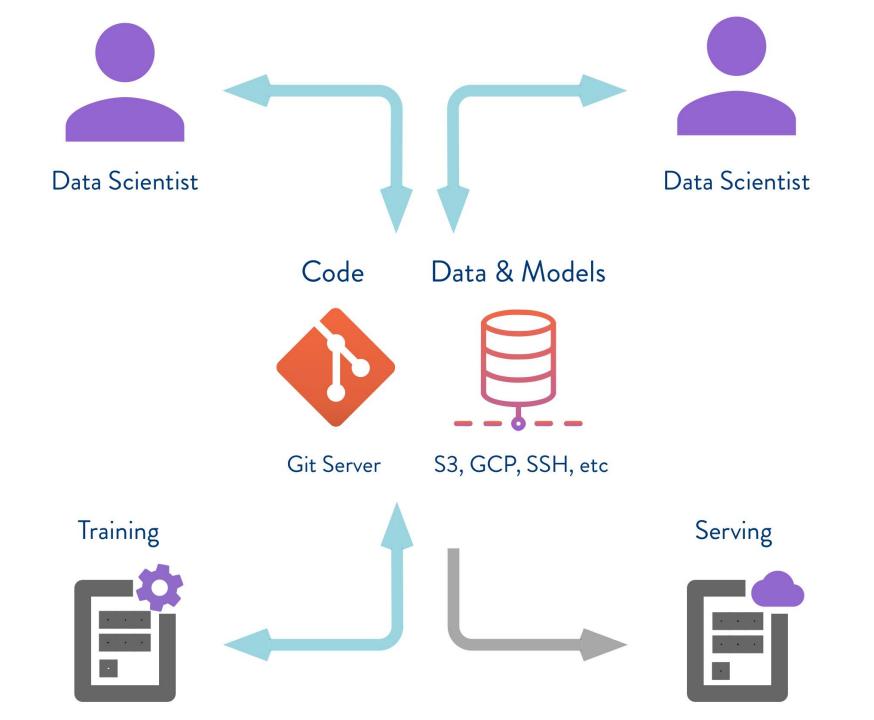



See https://azure.microsoft.com/en-us/overview/ai-platform for more information about the various services and features of the Microsoft AI Platform



Data Science Lifecycle

Sample Real World ML Pipeline Architecture


Common AI/ML Problems:

- Most libraries provide state-of-the-art algorithms but little pertinent training data
- For many conversational domains, training data may be difficult or impossible to collect
- Pre-built domains streamline development but are largely irrelevant for most apps
- Tools for building custom domains can only handle narrow models and trivial apps
- ML capabilities only scratch the surface of what is typically required for production apps

Machine Learning Development Lifecycle provides customized end to end solution from formal problem definition, domain modeling, creating training and test data, training models, evaluation of model, execution, deployment, and visualization.

Key Value Proposition:

• Not just offer an NLP library but provide expertise to work with bot framework for multiple modalities, commerce engine integration, and deployment infrastructure and expertise.

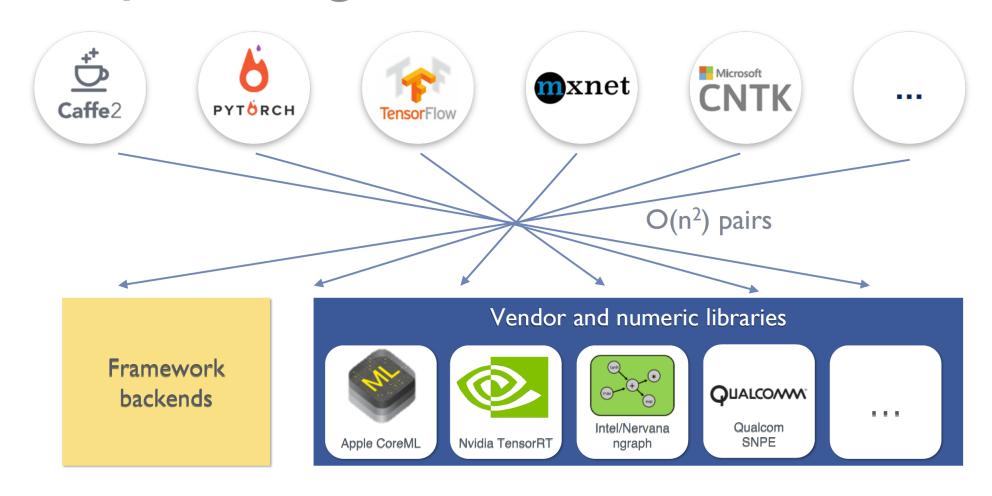
Standard?

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

5∞N:

SITUATION: THERE ARE 15 COMPETING STANDARDS.


ONNX Motivation

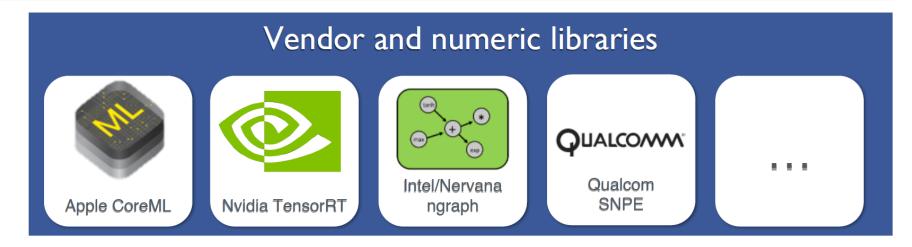
Allow interoperability between frameworks Starting with CNTK, Caffe2 and PyTorch

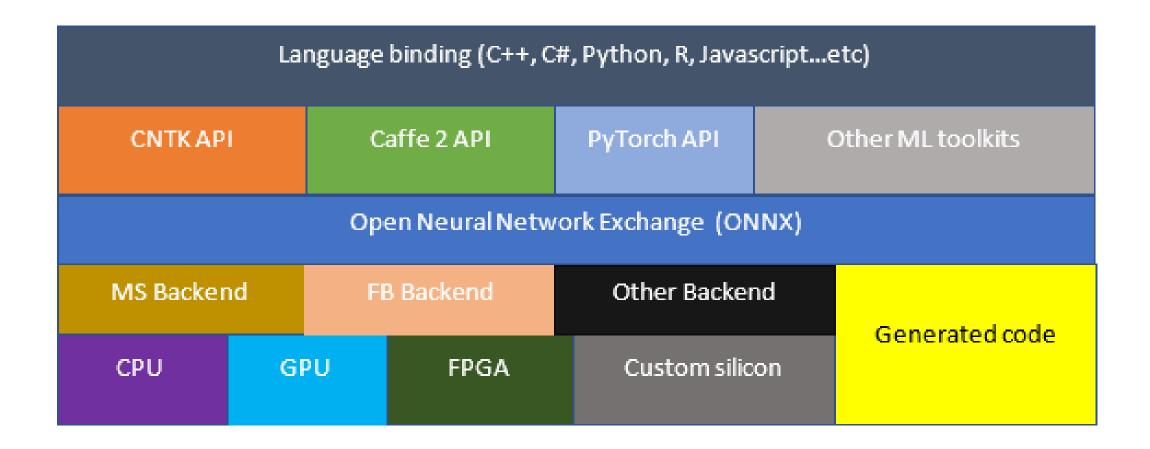
Allow hardware vendor to focus on one IR in their backend optimization

Allow train in one toolkit and deploy in another

Deep Learning Frameworks Zoo

Open Neural Network Exchange




Shared model and operator representation

From $O(n^2)$ to O(n) pairs

Framework backends

ONNX Vision

Open Neural Network Exchange (ONNX) is the first step toward an open ecosystem that empowers Al developers to choose the right tools as their project evolves. ONNX provides an open source format for Al models. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Initially we focus on the capabilities needed for inferencing (evaluation).

Caffe2, PyTorch, Microsoft Cognitive Toolkit, Apache MXNet and other tools are developing ONNX support. Enabling interoperability between different frameworks and streamlining the path from research to production will increase the speed of innovation in the AI community. We are an early stage and we invite the community to submit feedback and help us further evolve ONNX.

PyTorch

PyTorch is the framework for AI research at Facebook which enables rapid experimentation

Flexibility

Debugging

Dynamic neural networks

Not optimized for production and mobile deployments (Python)

When research projects produce valuable results, the models need to be transferred to production.

Traditionally, rewriting the training pipeline in a product environment with other frameworks.

Blog / Updates

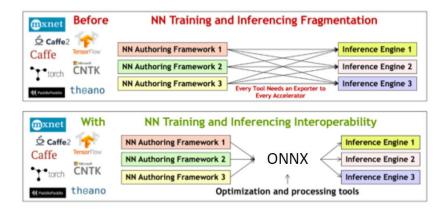
ONNX Runtime for inferencing machine learning models now in preview

Posted on October 16, 2018

Faith Xu, Senior Program Manager, Machine Learning Platform

We are excited to release the preview of ONNX Runtime, a high-performance inference engine for machine learning models in the Open Neural Network Exchange (ONNX) format. ONNX Runtime is compatible with ONNX version 1.2 and comes in Python packages that support both CPU and GPU to enable inferencing using Azure Machine Learning service and on any Linux machine running Ubuntu 16.

ONNX is an open source model format for deep learning and traditional machine learning. Since we launched ONNX in December 2017 it has gained support from more than 20 leading companies in the industry. ONNX gives data scientists and developers the freedom to choose the right framework for their task, as well as the confidence to run their models efficiently on a variety of platforms with the hardware of their choice.

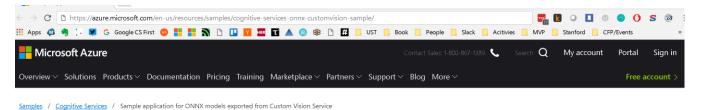


Importing and Exporting from frameworks

Framework / tool	Installation	Exporting to ONNX (frontend)	Importing ONNX models (backend)
Caffe2	onnx/onnx-caffe2	Exporting	Importing
PyTorch	part of pytorch package	Exporting, Extending support	coming soon
Cognitive Toolkit (CNTK)	built-in	Exporting	Importing
Apache MXNet	onnx/onnx-mxnet	coming soon	Importing [experimental]
Chainer	chainer/onnx-chainer	Exporting	coming soon
TensorFlow	onnx/onnx-tensorflow	coming soon	Importing [experimental]
Apple CoreML	onnx/onnx-coreml	coming soon	Importing

Interoperability

- Having at disposal several libraries how we can interoperate between then for reusing training for inference, or transfer learning?
- Fight against fragmentation


- For a while Caffe models have been used for exchange, ONNX or NNEF are proposed as interoperable solutions
 - Open Neural Network Exchange Format or Neuranl Network Exchange Format
- Tools around ONNX
 - Direct or indirect support for specific libraries
 - Runtime support by Nvidia TensorRT

ONNX

- Which kind of format is ONNX?
 - Based on Google Protobuf serialization
 - Describes network layers eventually with trained parameters
 - Node, Graph, Attribute, Operator, Value, Shape
 - All operators here:
 https://github.com/onnx/onnx/blob/master/docs/Operators.md
- Example with TF
 - https://github.com/onnx/tutorials/blob/master/tutorials/OnnxT ensorflowImport.ipynb
- Repository of Pre-trained Networks
 - https://github.com/onnx/models
 - E.g. ResNet-50 is 92MB

Sample application for ONNX models exported from Custom Vision Service

This sample application demonstrates how to take a model exported from the Custom Vision Service in the ONNX format and add it to an application for real-time image classification.

Getting Started

Prerequisites

- Windows SDK Build 17110+](https://www.microsoft.com/en-us/software-download/windowsinsiderpreviewSDK)
- Visual Studio 17
- Windows 10 Insider Preview
- An account at Custom Vision Service

Quickstart

- clone the repository and open the project in Visual Studio
- Build and run the sample Application

Open community

- Framework agnostic
- GitHub from the beginning
- Close partnerships and OSS contributions

ONNX is a community project.

https://onnx.ai

https://github.com/onnx

Microsoft

CNTK Latest Features (v2.2, v2.3)

New tutorials/examples/manuals

NCCL2 support

MKL-DNN integration

ONNX support

C#/.NET API

R-binding for CNTK

Model simplification/compression support

New ops and perf-improvements

Tensorboard support

Open Neural Network Exchange (ONNX)

ONNX is an open format to represent deep learning models

Supported by:

CNTK

PyTorch

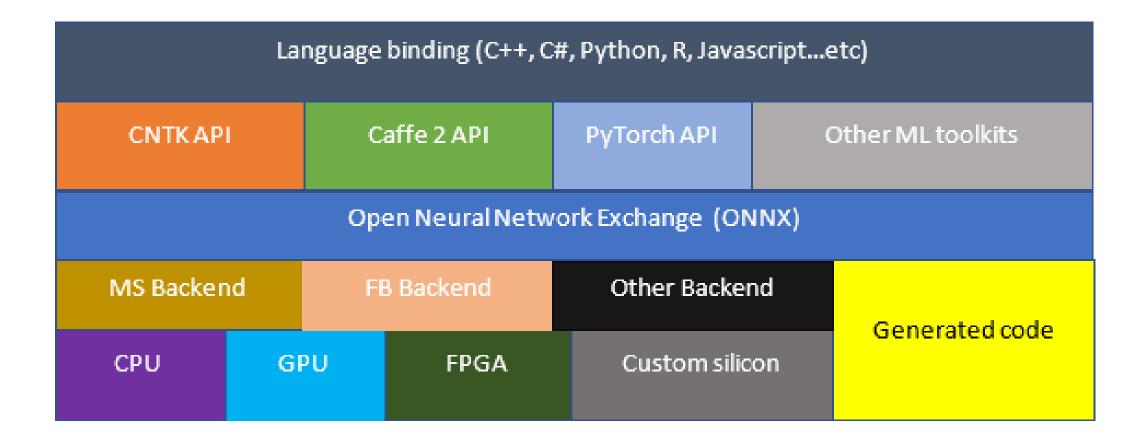
Caffe 2

MxNet

Enabled interop-ability between frameworks

For more information: https://onnx.ai/

ONNX Motivation


Allow interoperability between frameworks

Allow hardware vendor to focus on one IR in their backend optimization

Allow train in one toolkit and deploy in another

ONNX Vision

ONNX Status in CNTK

V1 release in Github, focus on the basics Support only inference, no loop, no condition and no gradient Supported by CNTK, Caffe2, PyTorch and MxNet Upcoming work:

Refined RNN support Loop and control

Converter for other toolkits are coming soon

Open Neural Network Exchange (ONNX)

An open source intermediate representation (IR) of computation graph (https://github.com/onnx/onnx)

With defined common OPs and their semantics Released on Sep. 7, 2017

Collaboration between Microsoft and Facebook A share library with a Caffe2 example as reference Permissive MIT license and no patents

Caffe2

Facebook's in-house *production* framework

For training and deploying large-scale machine learning models

Focuses on several key features required by products:

Performance

cross-platform support

coverage for fundamental machine learning algorithms (convolutional neural networks (CNNs), recurrent networks (RNNs), and multi-layer perceptrons (MLPs)) and up to tens of billions of parameters

Thank You!

https://ONNX.AI

https://github.com/onnx/onnx

Q&A