Beyond Hello World - Common Machine Learning Use Cases with ML.NET

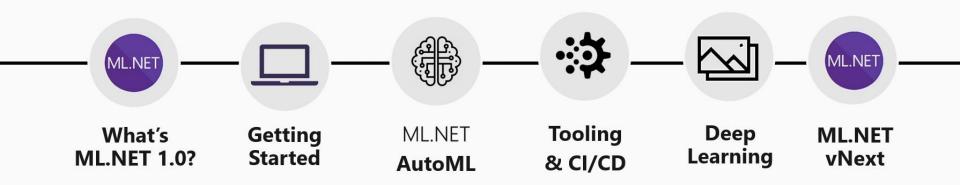
Adnan Masood, PhD.

Microsoft Azure + Al Conference

CO-PRODUCED BY

Microsoft & DEVintersection

About the Speaker



Adnan Masood, Ph.D. is an Artificial Intelligence and Machine Learning researcher, software architect, and Microsoft MVP (Most Valuable Professional) for Artificial Intelligence. As Chief Architect of Al and Machine Learning, at UST Global, he collaborates with Stanford Artificial Intelligence Lab, and MIT Al Lab for building enterprise solutions

Author of Amazon bestseller in programming languages, "Functional Programming with F#", Dr. Masood teaches Data Science at Park University, and has taught Windows Communication Foundation (WCF) courses at the University of California, San Diego. He is a regular speaker to various academic and technology conferences (WICT, DevIntersection, IEEE-HST, IASA, and DevConnections), local code camps, and user groups. He also volunteers as STEM (Science Technology, Engineering and Math) robotics coach for elementary and middle school students

A strong believer in giving back to the community, Dr. Masood is a co-founder and president of the Pasadena .NET Developers group, co-organizer of Tampa Bay Data Science Group, and Irvine Programmer meetup. His recent talk at Women in Technology Conference (WICT) Denver highlighted the importance of diversity in STEM and technology areas, and was featured by variety of news outlets.

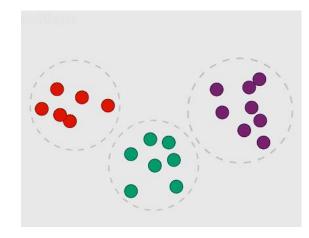
What are we going to talk about today?

Abstract

- ML.NET is an open source and cross-platform machine learning framework built for .NET developers. You can use your .NET and C# or F# skills to easily integrate custom machine learning into your applications without any prior expertise in developing or tuning machine learning models.
- In this talk we will write code in ML.NET to build the use cases around sentiment analysis, price prediction, Product recommendation, Customer segmentation, Spam detection, and sales forecasting to showcase the power and ease of framework.

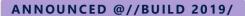
Microsoft & DFVintersection

Many ML Tasks


Is this A or B?

How much? How many?

How is this organized?



Classification

Regression

Clustering

And many more...

ML.NET 1.0

Machine Learning framework for building custom ML Models

Reuse .NET Skills

C# and F# for custom models

Proven at scale

Azure, Office, Windows

Custom ML made easy

Automated ML and Tools (Model Builder and CLI)

Extensible

TensorFlow, ONNX and Infer.NET

Free, Cross-platform and Open Source

A few things you can do with ML.NET 1.0 ...

Sentiment analysis

Analyze the sentiment of customer reviews using a binary classification algorithm.

Sentiment analysis sample >

Customer segmentation

Identify groups of customers with similar profiles using a clustering algorithm.

Customer segmentation sample >

classification algorithm.

Product recommendation

Recommend products based on purchase history using a matrix factorization algorithm.

Product recommendation sample >

Price prediction

Predict taxi fares based on distance traveled etc. using a regression algorithm.

Price prediction sample >

GitHub labeler

Suggest the GitHub label for new issues using a multi-class classification algorithm.

GitHub labeler sample >

Fraud detection

Detect fraudulent credit card transactions using a binary classification algorithm.

Fraud detection sample >

Flag text messages as spam using a binary

Spam detection sample >

Image classification

Classify images (e.g. broccoli vs pizza) using a TensorFlow deep learning algorithm.

Image classification sample >

Sales forecasting

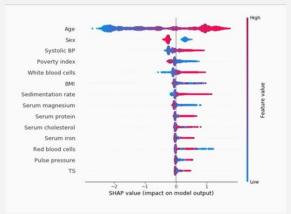
Forecast future sales for products using a regression algorithm.

Sales forecasting sample >

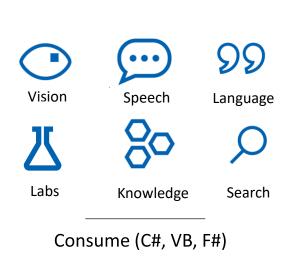
You can find more ML.NET samples on GitHub, or take a look at the ML.NET tutorials.

ML.NET enables interpretable machine learning

Explain & debug model predictions to build trust

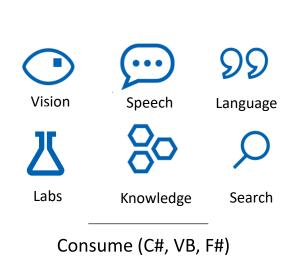

Meet regulatory requirements (health care, finance, more)

Ensure fairness & remove biases (address issues in data)


How do features impact specific prediction?

Which features are important in your data?

Pre-built machine learning models (i.e. Azure Cognitive Services)



e.g. Sentiment Analysis using Azure Cognitive Services

```
TextAnalyticsAPI client = new TextAnalyticsAPI();
client.AzureRegion = AzureRegions.Westus;
client.SubscriptionKey = "1bf33391DeadFish";
client.Sentiment(
new MultiLanguageBatchInput(
new List<MultiLanguageInput>()
                                         96% positive
new MultiLanguageInput("en","0",
    "This is a great vacuum cleaner")
}));
```

Microsoft & DEVintersection

Limitations with pre-built machine learning models

e.g. Sentiment Analysis using Azure Cognitive Services

Build your own custom machine learning models

ML.NET is a framework for building custom ML Models

Developer friendly APIs for Machine Learning

Training & Consumption

Transforms

Text

Schema

Missing values

Categorical

Normalization

Feature Selection

Learners

Linear

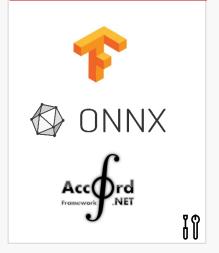
Boosted Trees

Svm

K-Means

Misc.

ML Data framework

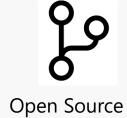

Evaluators

Calibrators

Data loaders

10

Extensions



ML.NET is a machine learning framework made for .NET developers

Supported on Windows, Linux, and macOS

ML.NET 1.1 is available @ https://github.com/dotnet/machinelearning

A few things you can do with ML.NET ...

Sentiment Analysis

Forecasting

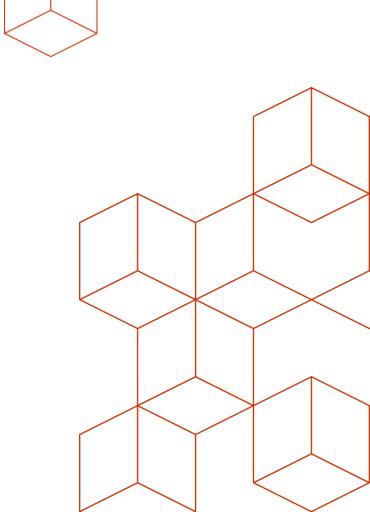
Issue Classification

Predictive maintenance

Image classification

Recommendations

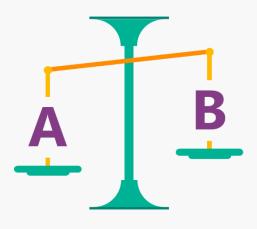
Object detection



Customer segmentation

And more! Samples @ https://github.com/dotnet/machinelearning-samples

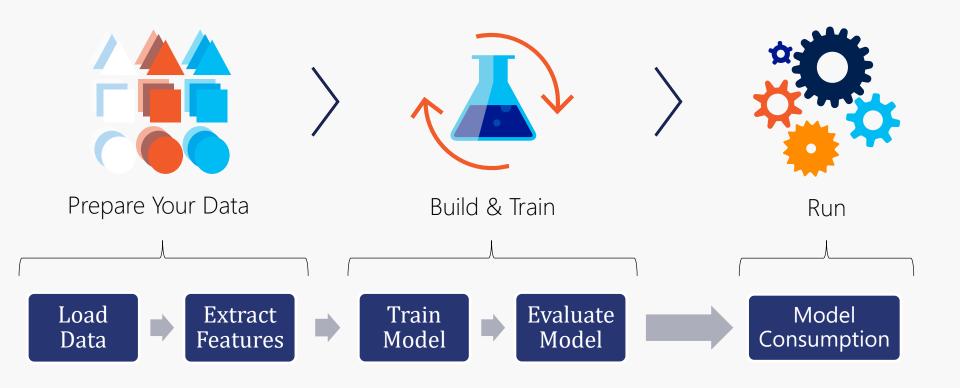
Getting Started with Sentiment Analysis



Sentiment Analysis

Comment	Toxic? (Sentiment)
==RUDE== Dude, you are rude	1
== OK! == IM GOING TO VANDALIZE	1
I also found use of the word "humanists" confusing	0
Oooooh thank you Mr. DietLime	0
	Υ
Features (input)	Label (output)

Sentiment analysis explained


Is this A or B?

Is this a toxic comment?

Yes or no

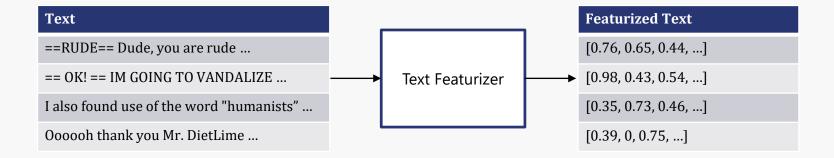
Machine learning workflow

Important concepts: Data

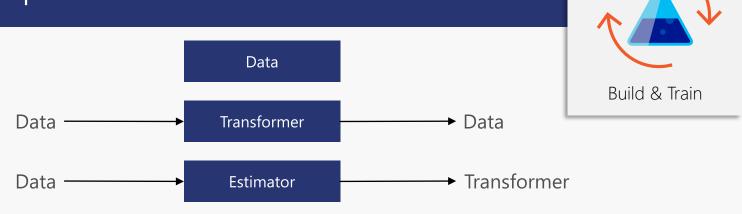
Prepare Your

Data

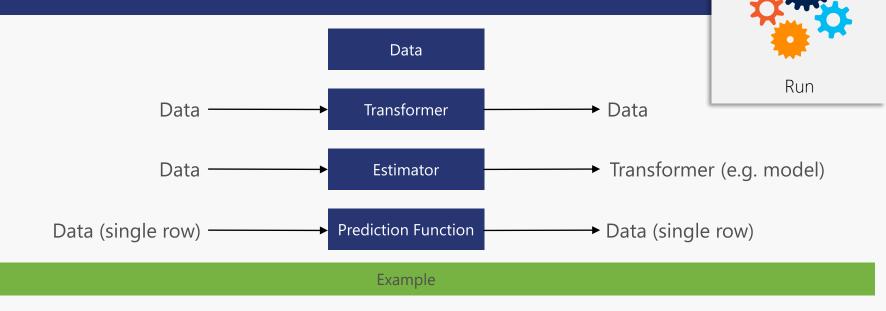
Data

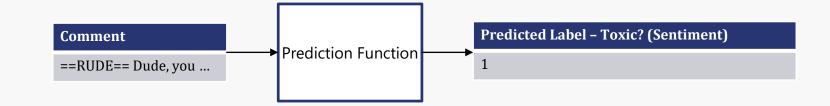

Example

Comment	Toxic? (Sentiment)
==RUDE== Dude, you are rude	1
== OK! == IM GOING TO VANDALIZE	1
I also found use of the word "humanists" confusing	0
Oooooh thank you Mr. DietLime	0

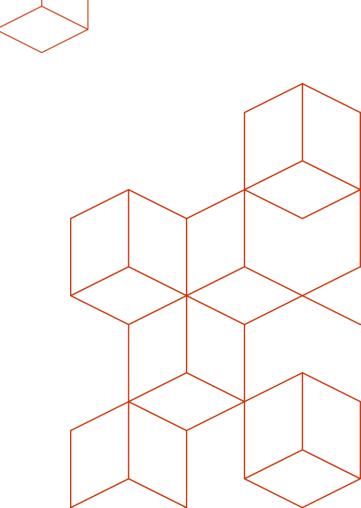

Important concepts: Transformer

Example

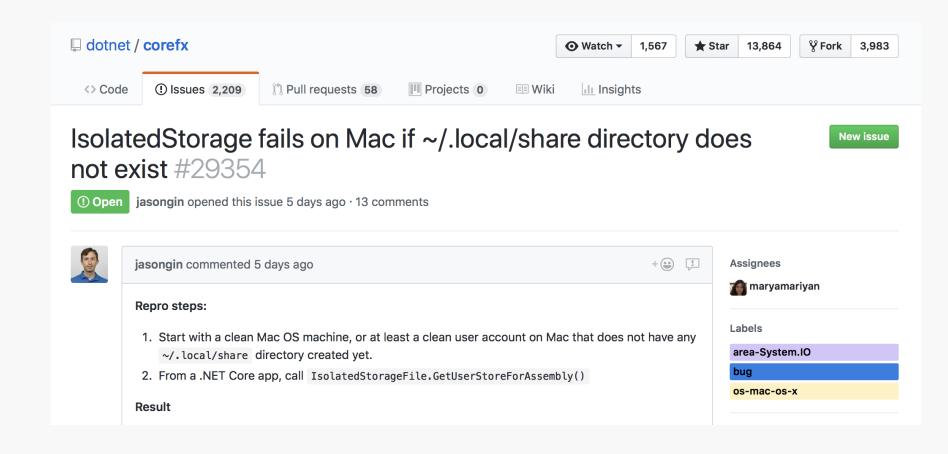

Important concepts: Estimator

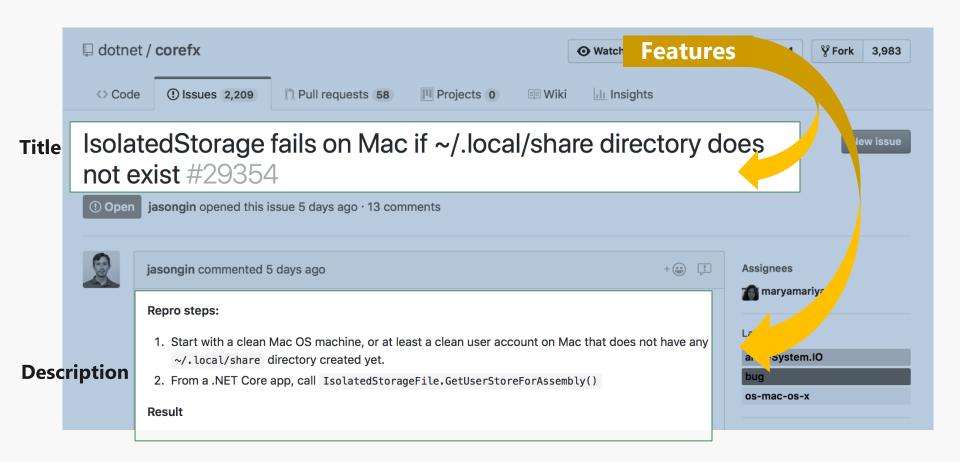


Example


Comment	Toxic? (Sentiment)			1	
==RUDE== Dude, you	1		F		M - /T f
== OK! == IM GOING	1	•	Estimator		→ Model (Transformer)
I also found use of the	0				
Oooooh thank you Mr	0				

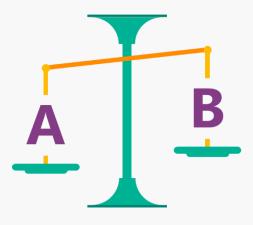
Important concepts: Prediction Function




Demo: Sentiment Analysis

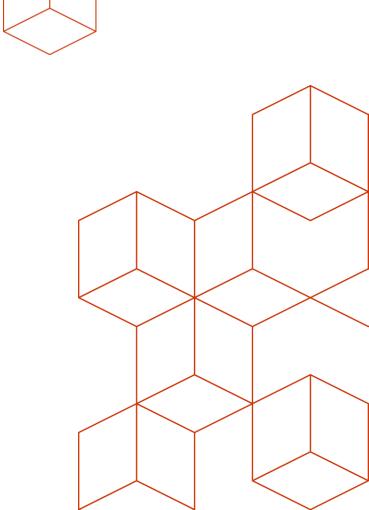
GitHub issue classification

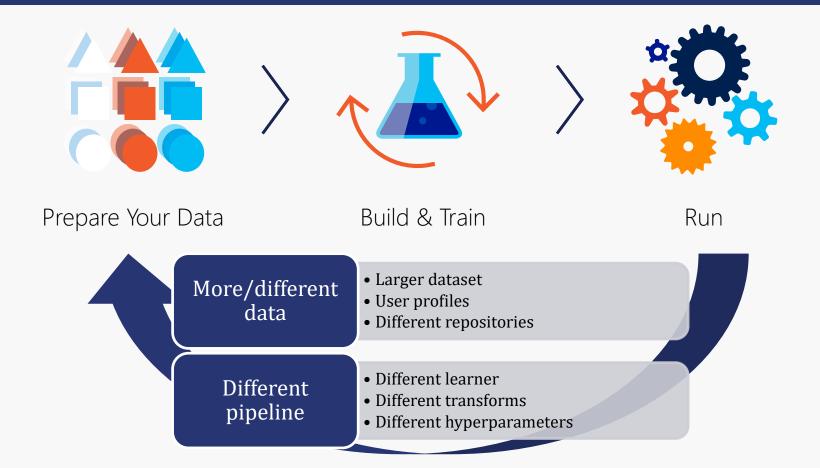
Features (input)

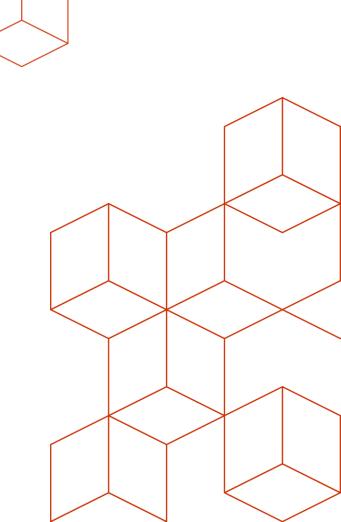


Label (output)

GitHub issue classification explained


Is this A or B?


Which label should this issue be assigned?


Demo: Issue Classification (GitHub)

Machine learning is iterative

Movie Recommendations

Approaches to Movie Recommendations

3. Collaborative Filtering

Approaches to Movie Recommendations

3. Collaborative filtering

If a person A (e.g. Gal) has the same opinion as a person B (e.g. Cesar) on an issue, A (Gal) is more likely to have B's (Cesar) opinion on a different issue than that of a random person

	Heat	Mission Impossible	Home Alone	Terminator 2	Casino Royale
Ankit	×	×	✓	✓	×
Gal	✓	✓	×	✓	?
Cesar	✓	✓	×	✓	✓

What's the probability of Gal liking Casino Royale?

ML.NET 0.3 provides support for Collaborative Filtering (Factorization Machines)

Approaches to Movie Recommendation

Which Dataset to use?

Movie Lens Dataset

20 million ratings, 27,000 movies across 138,000 users.

https://grouplens.org/datasets/movielens/

Ratings.csv

UserI d	movieI d	Rating	TimeStamp
1	1	2	1094785740
1	2	4.0	1094785734
1	6	4.0	1112485573
1	10	4.0	1112484703
1 1 1		4.0	1094785734 1112485573

Movies.csv

movieID	Title	Genre
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
2	Jumanji (1995)	Adventure Children Fantasy
6	Heat (1995)	Action Crime Thriller
10	GoldenEye (1995)	Action Adventure Thriller

Features (input)

Ratings

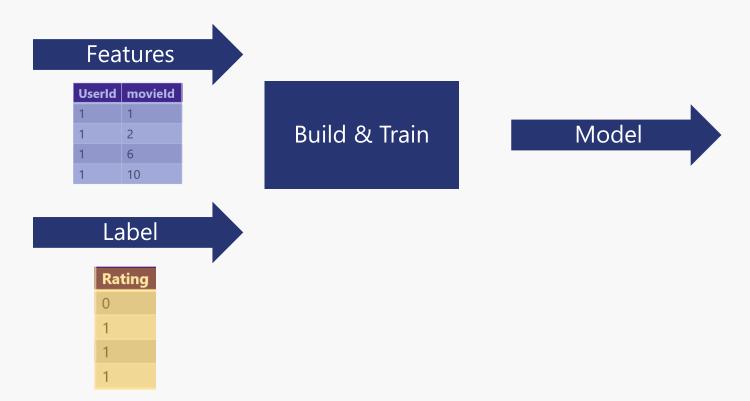
UserId	movieId	Rating	TimeStamp
1	1	0	1094785740
1	2	1	1094785734
1	6	1	1112485573
1	10	1	1112484703

Movies

movieID	Title	Genre
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
2	Jumanji (1995)	Adventure Children Fantasy
6	Heat (1995)	Action Crime Thriller
10	GoldenEye (1995)	Action Adventure Thriller

Label (output)

Ratings

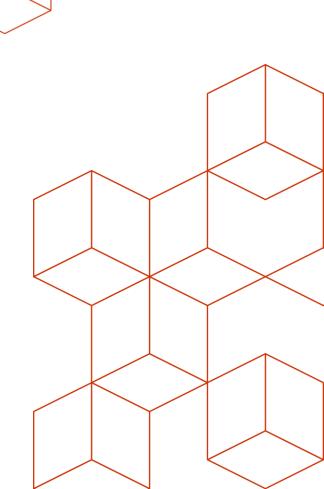

UserId	movield	Rating	TimeStamp
1	1	0	1094785740
1	2	1	1094785734
1	6	1	1112485573
1	10	1	1112484703

Movies

movieID	Title	Genre
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
2	Jumanji (1995)	Adventure Children Fantasy
6	Heat (1995)	Action Crime Thriller
10	GoldenEye (1995)	Action Adventure Thriller

Movie Recommendation with ML.NET

Training


Movie Recommendation with ML.NET

Prediction

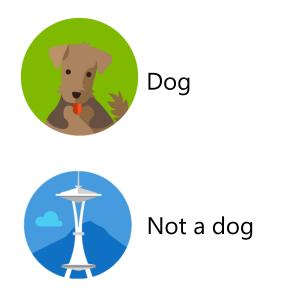
Movie Recommendations

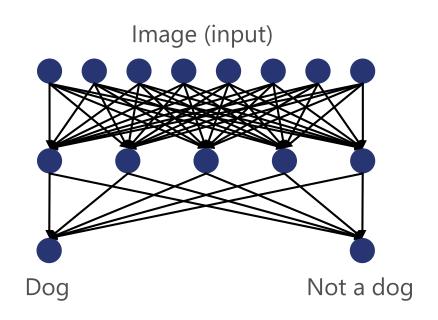
Demo: ML.NET + Factorization Machines



Movie Recommendation with ML.NET

Field Aware Factorization Machines

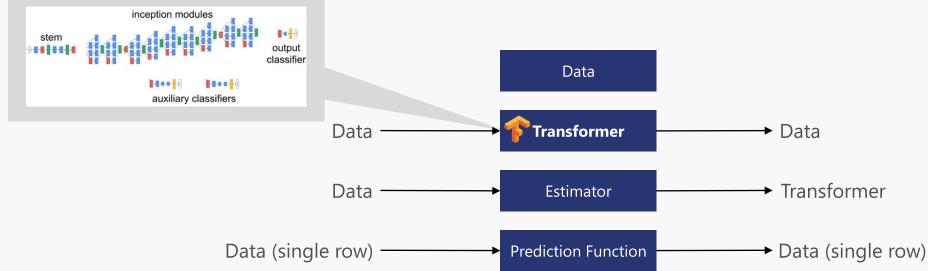

- Popular in Click Prediction and Recommender Systems competitions
- Combines advantages from Support Vector Machines & Factorization Methods

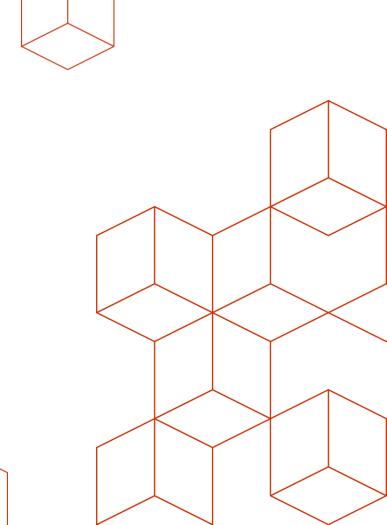

Deep Learning

Deep learning

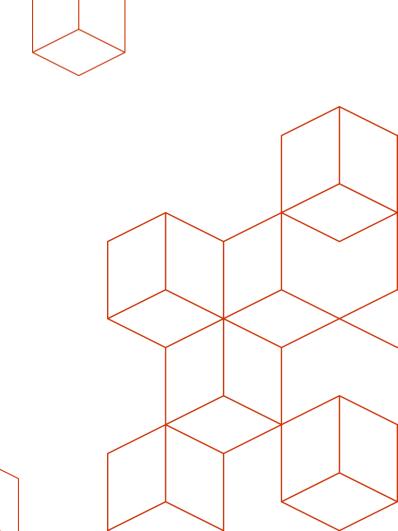
- Revolutionizing areas like computer vision and speech recognition
- Takes advantage of large amounts of data and compute

Deep learning with ML.NET




<u>Predicting Image classes with ML.NET + TensorFlow</u>

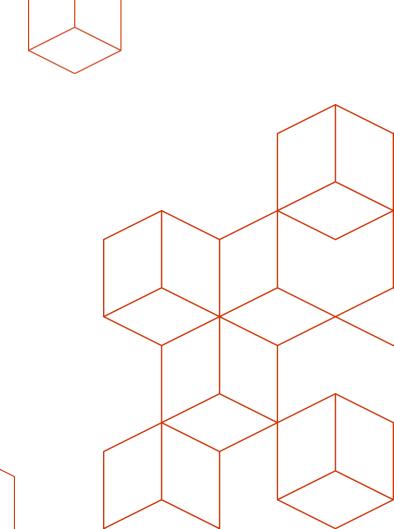
- TensorFlow: popular deep learning framework
- Pretrained model: Inception
 - 1000 classes e.g. cats, cars, breeds of dogs
- Implemented as a transformer in ML.NET


Image Classification

Demo: TensorFlow + ML.NET

Style Transfer

Demo: TensorFlow + ML.NET

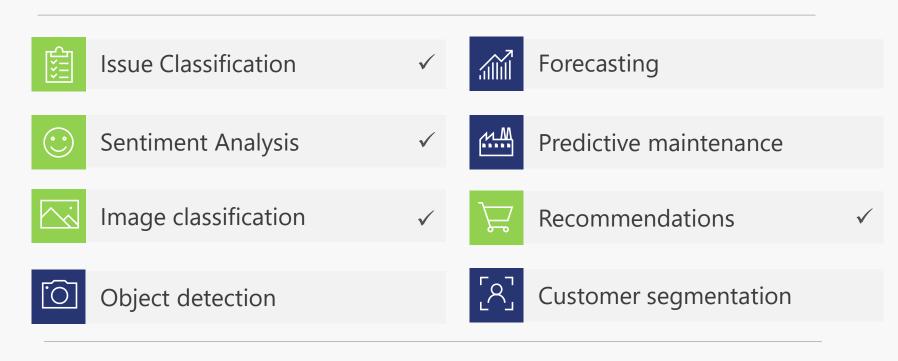


ONNX: Open and interoperable Al

Emotion Detection

Demo: ONNX + ML.NET

Deep learning with ML.NET



ApplyTensorFlowGraph

ApplyONNXGraph

A few things you can do with ML.NET ...

And more! Samples @ https://github.com/dotnet/machinelearning-samples

What's next with ML.NET?

- API improvements
- Additional ML Tasks and Scenarios
- Improved Deep Learning with TensorFlow
- Scale-out on Azure
- Better GUI to simplify ML tasks
- Improved tooling in Visual Studio
- Improvements for F#
- Language Innovation for .NET

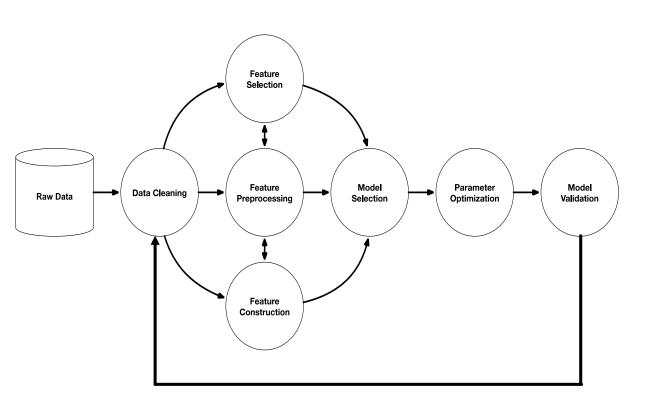
Try ML.NET today!

Get started at http://dot.net/ml

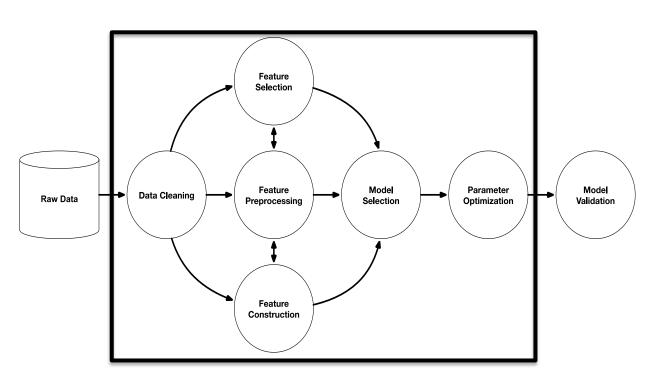
Try the samples at http://aka.ms/mlnetsamples

Read the docs at http://aka.ms/mlnetdocs

Request features or contribute at http://aka.ms/mlnet

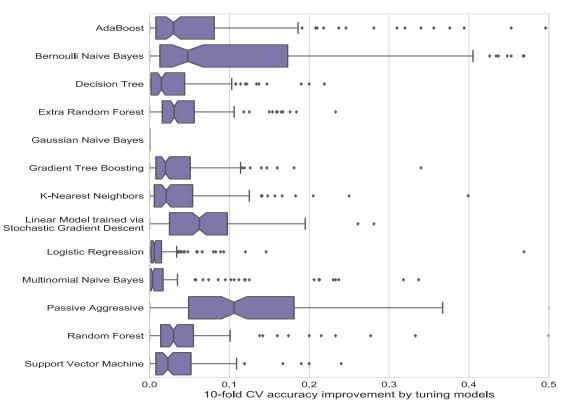

"AutoML is a quiet revolution in Al..."

Automated Machine Learning—A
Paradigm Shift That Accelerates Data
Scientist Productivity @ Airbnb


Building A.I. That Can Build A.I.

Google and others, fighting for a small pool of researchers, are looking for automated ways to deal with a shortage of artificial intelligence experts.

ML still requires a lot of manual programming



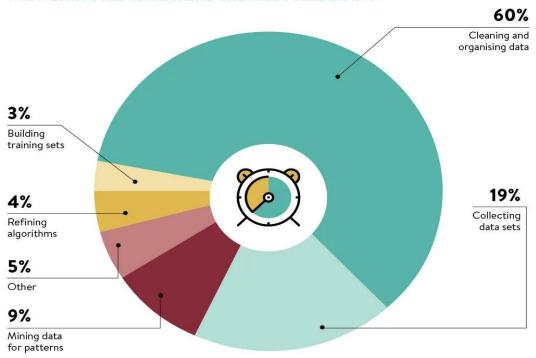
AutoML aims to automate the entire ML workflow

Default parameters are almost always bad

AutoML handles this for you!

AutoML is a huge time-saver

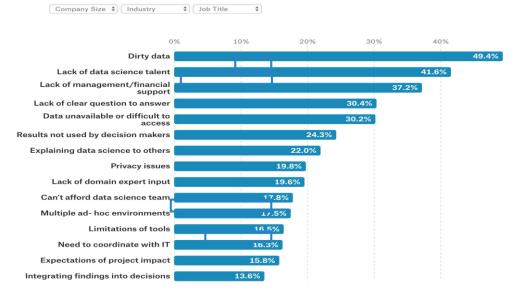
AutoML handles (some of)


thicufat 165 datasets where model A outperformed model B

Lrr	1511	urv		icasc	-C3 VV	riici	- 1110	uci /	· ou	.pcii	OTTIN	<u> </u>	iouci
Gradient Tree Boosting -		32%	45%	38%	67%	72%	78%	76%	78%	82%	90%	95%	95%
Random Forest	9%		33%	23%	62%	65%	71%	69%	71%	76%	85%	95%	90%
Support Vector Machine	12%	21%		25%		65%		62%	67%	74%	79%	95%	93%
Extra Random Forest	- 8%	14%	30%		58%	63%	61%	64%	67%	70%	81%	93%	91%
Linear Model trained via Stochastic Gradient Descent	- 8%	16%	9%	15%		38%				61%	66%	89%	87%
K-Nearest Neighbors	- 4%	8%	7%	8%					52%		70%	88%	85%
S Decision Tree	- 2%	2%	20%	8%						57%	69%	80%	82%
AdaBoost	- 1%	7%	10%	15%	30%		32%			47%	59%	76%	77%
Logistic Regression	- 5%	10%	3%	8%	11%	31%	33%				54%	79%	81%
Passive Aggressive	- 2%	6%	1%	5%	0%	18%	28%	28%	13%			81%	79%
Bernoulli Naive Bayes	- 0%	2%	2%	4%	10%	13%	18%	15%	22%	25%		62%	68%
Gaussian Naive Bayes	- 0%	1%	3%	2%	6%	6%	11%	12%	9%	10%	22%		45%
Multinomial Naive Bayes	- 1%	1%	2%	2%	2%	5%	10%	14%	4%	5%	13%		
	GTB RF SVM ERF SGD KNN DT AB LR PA BNB GNB MNB Losses												

AutoML is a huge time-saver

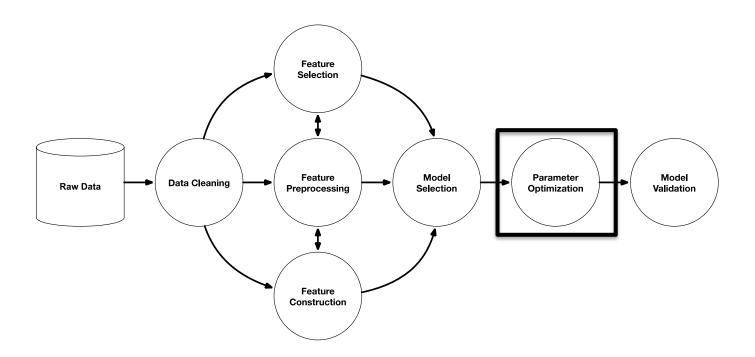
AutoML handles (some of) this for you!


WHAT DATA SCIENTISTS SPEND THE MOST TIME DOING

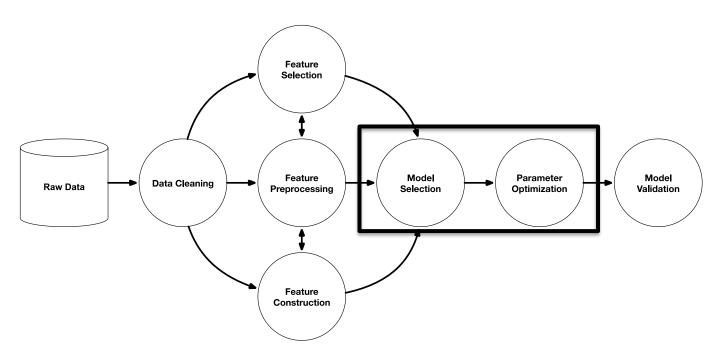
The business case for AutoML

What barriers are faced at work?

Ah, dirty data, we meet again. It looks like, in general, dirty data is the most common problem for workers in the data science realm. One exception are those necessarily meticulous Database Engineers. After dirty data, company politics, lack of management and/or financial support are the real thorns in a data scientist's side.

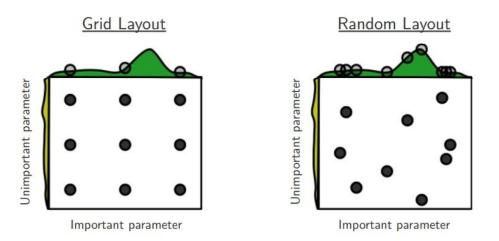

7,376 responses

Only displaying the top 15 answers. There are 7 answers not shown.

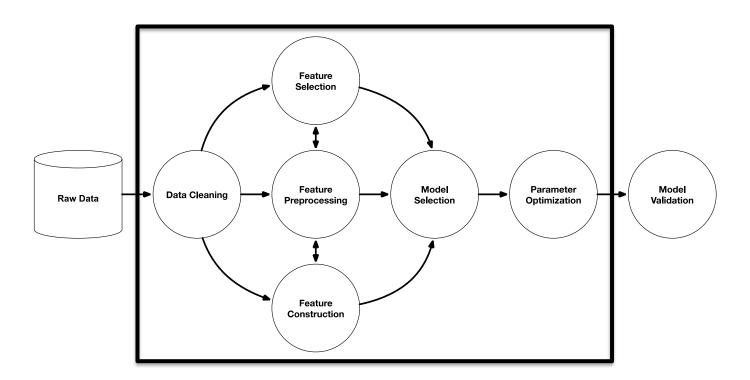


View code in Kaggle Kernels

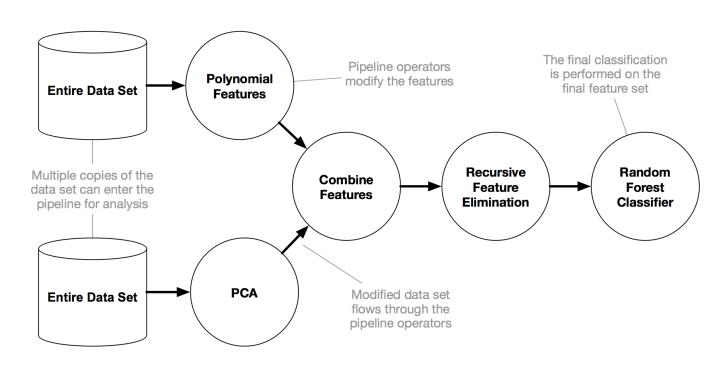
Early AutoML focused on only parameter tuning



Early AutoML focused on only parameter tuning


... and maybe (limited) model selection

We mostly used grid search and random search



Nowadays, we wouldn't really call this AutoML

Modern AutoML optimizes the entire ML workflow

Modern AutoML optimizes the entire ML workflow

Open source AutoML tools

auto-sklearn [Python]

- Bayesian optimization over a fixed 3-step ML pipeline
- github.com/automl/auto-sklearn

auto-Weka [Java]

- Similar to auto-sklearn, but built on top of Weka
- github.com/automl/autoweka

TPOT [Python]

- Genetic Programming over a configurable ML pipeline
- github.com/rhiever/tpot

H2O.ai AutoML [Java w/ Python, Scala, & R APIs and web GUI]

- Basic data prep w/ mix of grid and random search over ML algorithms
- github.com/h2oai/h2o-3

devol [Python]

- Deep Learning architecture search via Genetic Programming
- github.com/joeddav/devol

AutoMLaaS: Commercial AutoML tools

DataRobot

- Web-based interface
- Fixed search over thousands of ML pipelines

H2O.ai Driverless AI

- Web-based interface
- □ H2O.ai AutoML + better feature construction

Google AutoML

- Integrated in the Google Cloud Compute platform
- DNN architecture search

SAS Factory Miner

☐ Fixed search over a handful of ML methods

IBM SPSS Modeler

Basic automated data preparation and ML modeling

AutoML in the near future

AutoML will also handle most of the data cleaning process

- \Box Unstructured data \rightarrow tabular data ready for analysis
- Capture & automate human approaches to data cleaning

AutoML will vastly improve Deep Learning

- Automated DNN architecture design
- Automated preprocessing of data prior to modeling

AutoML will scale to large datasets

- AutoML is very slow right now on "Big Data"
- □ Spark, dask, TensorFlow, etc. will help bring AutoML to scale

AutoML will become human-competitive

- Already human-competitive on several Kaggle challenges
- Already human-competitive in DNN architecture design (Google AutoML)

AutoML in the future

AutoML will transform the practice of data science as we know it

- □ "Data Science Assistant" → Junior Data Scientist level
- Less focus on choosing the right ML workflow
- More focus on posing the right questions, collecting & curating the right data, and "thinking like a data scientist"

AutoML will become productized

- Not AutoMLaaS!
- "Siri, set an alarm for 6am" \rightarrow "Siri, set an alarm for the best time for me to wake up"
- "Siri, [given my personal medical history] should I worry about this rash on my face?"

AutoML is only a small part of a greater meta-learning movement

- □ Computer programming is focused on automating rote tasks
- Machine learning is focused on automating the automation of rote tasks
- Meta-learning is focused on automating the automation of automation
 - i.e., enabling the machine to learn *how* to learn in the best way possible

Questions

Microsoft & DEVintersection

Please use EventsXD to fill out a session evaluation.

Thank you!

