- S. Abe and T. Inoue. Fuzzy support vector machines for multiclass problems.In ESANN 2002 Proceedings, pages 113-118, 2002.
- E.L. Allwein, RE. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying approach for margin classifiers. Journal of Machine Learning Research,
1:113-141,2000.
- P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2(1):53-581989
- Marc Benioff. Data, data everywhere: A special report on managing information. The Economist, February 2010.
- J.M. Keller R Krishnapuram L.I. Kuncheva J.C. Bezdek and N.R Pal. Will the real iris data please stand up? IEEE Transactions on Fuzzy Systems, 7:3,
1999.
- C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121-167, 1998.
- C. Chen, A. Liaw, and L. Breiman. Using random forest to learn imbalanced data. Technical report, Department of Statistics, UC Berkeley, 2004.
- V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory and
Methods. John Wiley & Sons, Inc., 1998.
- R. Cilibrasi and P. Vitanyi. Clustering by compression. IEEE Transactions on
Information Theory, 51(4):1523-1545, 2005.
- R. Cilibrasi and P. Vitanyi. Normalized web distance and word similarity.
CoRR, abs/0905.4039, 2009.
- R. Cilibrasi, P. Vitanyi, and R. de Wolf. Algorithmic clustering of music. In
WEDELMUSIC, pages 110-117, 2004.
- T. Downs, I. Wood, and M. Gallagher. Empirical evidence for ultrametric structure in multi layer perceptron error surfaces. Neural Processing Letters,
16(2):177~186, 2002.
- A.A. Freitas. Are we really discovering "interesting" knowledge from data?
Expert Update (the BCS-SGAI Magazine), 9(1):41~47, October 2006.
- L. Geng and H. J. Hamilton. Interestingness measures for data mining: A
survey. ACM Comput. Surv., 38(3), 2006.
- M. Gori and F. Scarselli. Are multilayer perceptrons adequate for pattern recognition and verification? IEEE Trans. Pattern Anal. Mach. Intell., 20(11):1121~
1132, 1998.
- P.M. Granitto, P.F. Verdes, and H.A. Cecatto. Neural network ensembles:
evaluation of aggregation algorithms. arXiv, arXiv:cs.AI/0502006vl, 2005.
- S. Hashemi and T.P. Trappenberg. Using svm for classification in data sets with ambiguous data. In International Conference on Information Systems, Analysis and Synthesis (SCI 2002), 2002.
- M. Hassoun. Fundamentals of Artificial Neural Networks. Massachusetts Institute of Technology, 1995.
- S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc., second edition, 1999.
- Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. Pattern
Recognition Letters, 24(9-10):1641-1650, 2003.
- S. Hettich and S. D. Bay. Kdd cup 1999 data. UCI KDD Archive
[http://kdd.ics.uci.edu/ /databases/kddcup99/kddcup99.html], 1999.
- L. Itti and P. Baldi. Bayesian surprise attracts human attention. In Proceedings
Neural Information Processing Systems, 2005.
- B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data
{Data-Centric Systems and Applications}. Springer, January 2007.
- S. Singh M. Markou. Novelty detection: a review part 1: statistical approaches.
Signal Processing, 83(12):2481-2497, December 2003.
- K. McGarry. A survey of interestingness measures for knowledge discovery. The
Knowledge Engineering Review, 00:0:1-24, 2005.
- P. M. Murphy and M. J. Pazzani. Exploring the decision forest: an empirical investigation of occam's razor in decision tree induction. J. Artij. Int. Res.,
1(1):257-275, 1993.
- A. Orriols-Puig, J. Casillas, and E. Bernado-Mansilla. First approach toward online evolution of association rules with learning classifier systems. In GECCO
'08: Proceedings of the 2008 GECCO conference companion on Genetic and evolutionary computation, pages 2031-2038, New York, NY, USA, 2008. ACM.
- Y.H. Pao and C.- Y. Shen. Visualization of pattern data through learning of non- linear variance-conserving dimension-reduction mapping. Pattern Recognition,
30(10):1705-1717,1997.
- J.M. Puche, J.M. Benitez, and J.L. Mantas. Fuzzy pairwise multiclass support vector machines. In A. Gelbukh and C.A. Reyes-Garcia, editors, Mexican International Conference on Artificial Intelligence (MICA I) , volume LNAI, pages 562-571. Springer-Verlag, 2006.
- M. Robnik-Sikonja. Improving random forests. In J.F. Boulicaut et al., editor,
Machine Learning, ECML 2004, 2004.
- J. Schmidhuber. Driven by compression progress: A simple principle explains essential aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science, music, jokes. CoRR, abs/0812.4360, 2009.
- C. Shirky. It's not information overload. it's filter failure. Keynote Speech, September 2008.
- E. Suzuki. Data mining methods for discovering interesting exceptions from an unsupervised table. Journal of Universal Computer Science, 12(6):627-653,
2006. http://w ..... jucs. org/jucs_12_6/data_mining_methods_for.
- E. Suzuki. Lecture Notes in Computer Science, volume 5579/2009, chapter Compression-Based Measures for Mining Interesting Rules, pages 741-746. Springer Berlin / Heidelberg, 2009.
- P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, {First
Edition}. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005.
- D. Tax and R Duin. Experiments with classifier combining rules. In Lecture
Notes in Computer Science, volume 1857, pages 16-29, Berlin, 2000. Springer- Verlag.
- D. Tax and RP.W. Duin. Using two-class classifiers for multi class classification.
In C. Suen R Kasturi, D. Laurendeau, editor, Proceedings 16th International Conference on Pattern Recognition, volume II, pages 124-127, Quebec City, Canada, Aug.11-15 2002. IEEE Computer Society Press.
- I. Tsang, J. Kwok, P. Cheung, and N. Cristianini. Core vector machines: Fast svm training on very large data sets. Journal of Machine Learning Research,
6:363-392, 2005.
- L. H. Tsoukalas and R E. Uhrig. Fuzzy and Neural Approaches in Engineering.
John Wiley & Sons, Inc., New York, NY, USA, 1996.
- C. S. Wallace and D. M. Boulton. A information measure for classification.
Computer Journal, 11(2):185-194, 1968.
- J.-S. Wang and J.-C. Chiang. An efficient data preprocessing procedure for support vector clustering. Journal of Universal Computer Science, 15(4):705-
721, 2009. http://www . jucs. org/jucs_15_4/an_efficient_data_preprocessing.
- J. D. Williams. The Compleat Strategyst: Being a Primer on the Theory of
Games of Strategy. Dover Publications, 1986.